
CHAPTER 4

Uniqueness and non-uniqueness of Gibbs states

4.1. Uniqueness of KMS states at high temperature

We give here a su�cient condition (high temperature) that guarantees the
uniqueness of the infinite-volume Gibbs state. The method of proof is inspired by
[16]. Recall that existence of Gibbs states at any temperature can be established
by a compactness argument.

Recall that dim H0 = N .

Theorem 4.1. Assume that there exists r > 0 such that k�kr < r

2
and

that
k�kr

r

2
� k�kr

< e�r
23/2

N5/2
.

Then the KMS state for the interaction � is unique.

In this section we denote the state ⇢(·) = h·i. Notice that the interaction � is
small enough so that the evolution operator ↵i is bounded on A⇤ for all ⇤ b Z2,
see (3.45).

The starting point is the following rearrangement of the KMS condition:

⇢([A, B]) = ⇢
�
B(↵i � 1l)A

�
. (4.1)

In order to use this equation we need to turn an operator into a sum of commu-
tators. This is the content of the next lemma.

Lemma 4.2. Let A be a hermitian N ⇥ N matrix with the property that
Tr A = 0. Then there exist hermitian N ⇥ N matrices b1, . . . , bN�1 and
c1, . . . , cN�1 (that depend on A) such that

A = i
N�1X

k=1

[bk, ck]

and
N�1X

k=1

kbkk kckk 
1

2
N kAk.
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58 4. UNIQUENESS AND NON-UNIQUENESS OF GIBBS STATES

Proof. Let ↵1, . . . , ↵N be the eigenvalues of A (repeated according to their
multiplicity). We have that

P
N

i=1
↵i = 0. Let us order the eigenvalues so that

���
kX

i=1

↵i

���  kAk (4.2)

for all 1  k  N � 1. This is indeed possible, as can be seen by induction usingP
↵i = 0: If 0 

P
k ↵i  kAk, we can find ↵k+1  0 among the remaining

eigenvalues such that |
P

k+1 ↵i|  kAk. And if the partial sum is negative, we
can find ↵k+1 � 0 among the remaining eigenvalues, with the same conclusion.

We work in a basis such that A is diagonal and its eigenvalues are ordered so
they satisfy the properties above. Let ↵̃k =

P
k

i=1
↵i, and let �1

j,j+1
, �2

j,j+1
, �3

j,j+1

be N ⇥ N matrices that are equal to Pauli matrices on the 2 ⇥ 2 block that
contains (j, j) and (j + 1, j + 1), and that are equal to zero everywhere else. It is
not hard to check that

A =
N�1X

j=1

↵̃j �3

j,j+1
. (4.3)

We therefore have that

A = �
i

2

N�1X

j=1

↵̃j [�1

j,j+1
, �2

j,j+1
], (4.4)

which proves the first claim. The bound follows from |↵̃j|  kAk and k�i

j,j+1
k =

1. ⇤

Recall that kAk2 =
p

tr A⇤A is the normalised Hilbert-Schmidt norm. For
A 2 A⇤ we have 1

p
dim H⇤

kAk  kAk2  kAk.

Proof of Theorem 4.1. Let ⇢(0) a fixed KMS state for �. We want to
show that any KMS state satisfies ⇢(A) = ⇢(0)(A) for all A 2 A. It is enough
to show it for all A 2 A

sa

⇤
and all ⇤ b Zd, where A

sa

⇤
is the set of self-adjoint

operators with support inside ⇤.
We proceed by induction on ⇤: We assume the result to hold for ⇤ and we

prove it for ⇤[{x} where x 2 Zd
\⇤. (The base case is A = 1l for which certainly

⇢(1l) = ⇢(0)(1l) = 1.)
Let (ej)

N
2
�1

j=0
be an orthogonal hermitian basis of MN(C) such that e0 = 1l,

Tr ej = 0 if j 6= 0, Tr eiej = 0 if i 6= j, ej is hermitian, and kejk = 1, for all j.
Any operator A 2 A

sa

{x}[⇤
has a unique decomposition as

A =
N

2
�1X

j=0

ej ⌦ Cj, (4.5)
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where Cj 2 A
sa

⇤
. We use Lemma 4.2 to write ej = i

P
N�1

k=1
[b(k)

j
, c(k)

j
] for j > 0. The

KMS condition then implies that

⇢(A) =
N

2
�1X

j=0

⇢(ej ⌦ Cj)

= ⇢(1l{x} ⌦ C0) +
N

2
�1X

j=1

N�1X

k=1

⇢
�
i[b(k)

j
⌦ 1l⇤, c(k)

j
⌦ Cj]

�

= ⇢(1l{x} ⌦ C0) +
N

2
�1X

j=1

N�1X

k=1

⇢
�
i(c(k)

j
⌦ Cj)(↵i � 1l)(b(k)

j
⌦ 1l⇤)

�
.

(4.6)

Let ⇢0 be the linear functional on A
sa

⇤
such that ⇢0(A) = ⇢(0)(e0 ⌦ C0). We

have ⇢(1l{x} ⌦ C0) = ⇢0(A) by induction. Let us introduce the operator K :
L(⇤{x}[⇤) ! L(⇤{x}[⇤) such that, with respect to the decomposition (4.5),

(K�)(A) =
N

2
�1X

j=1

N�1X

k=1

�
�
i(c(k)

j
⌦ Cj)(↵i � 1l)(b(k)

j
⌦ 1l⇤)

�
. (4.7)

The KMS condition can then be cast as an identity about linear functionals,
namely

⇢ = ⇢0 + K⇢. (4.8)

This is equivalent to (1 � K)⇢ = ⇢0. We now show that 1 � K is invertible so
there is a unique solution for ⇢.

We work in the real linear vector space (Asa

{x}[⇤
, k·k2). Then k�k = sup

kAk2=1
|�(A)|.

We have

|(K�)(A)| 

N
2
�1X

j=1

N�1X

k=1

���
�
(c(k)

j
⌦ Cj)(↵i � 1l)(b(k)

j
⌦ 1l⇤)

���

 k�k

N
2
�1X

j=1

N�1X

k=1

��(c(k)

j
⌦ Cj)(↵i � 1l)(b(k)

j
⌦ 1l⇤)

���
2

 k�k er
k�kr

r

2
� k�kr

N
2
�1X

j=1

kCjk2

N�1X

k=1

kc(k)

j
k kb(k)

j
k.

(4.9)

We used Eq. (3.44) to get

k(↵i � 1l)(b(k)

j
⌦ 1l⇤)k  er

k�kr

r

2
� k�kr

kb(k)

j
k. (4.10)
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The sum over k is less than N/2 by Lemma 4.2. We check in Exercise 4.1 thatP
j
kCjk2 

N
3/2

p
2

kAk2. We have proved that

kKk 
N5/2

23/2
er

k�kr

r

2
� k�kr

. (4.11)

Then kKk < 1 and 1 � K is invertible when � satisfies the condition of the
theorem. ⇤

4.2. Long-range order in the XXZ-model

4.2.1. The classical Ising model. The classical Ising model is obtained
by taking J1 = J2 = 0 and n = 2 (spin 1

2
) in the xyz-hamiltonian (1.37). It is

convenient to take J3 = 2 and to add a constant.

Ising hamiltonian:

HIsing
⇤

= �2
X

xy2E(⇤)

(S(3)
x

S(3)
y

�
1

4
) = �

1

2

X

xy2E(⇤)

(�(3)
x

�(3)
y

� 1). (4.12)

Here �(3) =
�

1 0

0 �1

�
is the Pauli matrix. The hamiltonian is diagonal in the

usual product-basis:

HIsing
⇤

|!i =
�

�
1

2

P
xy2E⇤

(!x!y � 1)
�
|!i, (4.13)

where ! = {!x}x2⇤ 2 {�1, +1}⇤ denotes a configuration of classical spins. Thus,
the Gibbs factor e��H⇤ /Z⇤ is also diagonal:

1

Z⇤

e��H
Ising
⇤ |!i =

1

Z⇤

exp
�

1

2
�
P

xy2E(⇤)
(!x!y � 1)

�
|!i. (4.14)

Because of this, it is customary to consider the probability measure on the set
{�1, +1}⇤ of spin configurations given by

P⇤(!) =
1

Z⇤

exp
�

1

2
�
P

xy2E(⇤)
(!x!y � 1)

�
, ! 2 {�1, +1}⇤. (4.15)

The spin-spin correlation becomes an expected value:

h�(3)
x

�(3)
y

i⇤ = E⇤[!x!y]. (4.16)

The fact that it is trivial to diagonalize the hamiltonian does not mean that
the model is trivial — far from it. An excellent introduction to the subject is given
in [10]. A central feature of the theory is that the Z2-symmetry of the model,
obtained by simultaneously mapping all !x 7! �!x, is broken at low temperature
(large �). For this we take ⇤ = ⇤N = {�N, �N + 1, . . . , N}

d to be a box in Zd

for d � 2:
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Figure 4.1. Ising configurations and their sets of contours. If x
and y carry di↵erent values, there must be a contour separating
them (possibly by surrounding one of them). Reversing all signs
on the left side of a given contour � in the set g (the red one in the
picture) produces a configuration with set g \ {�}.

Theorem 4.3. Consider the model (4.12) with d � 2. There exist �0 < 1

and c(�) > 0 (that depend on d but not on N) such that for � > �0, we
have

h�(3)
x

�(3)
y

i⇤ � c (4.17)

for all x, y 2 ⇤N .

We state below the same theorem for the asymmetric quantum Heisenberg
model. The theorem above is then a special case. We nonetheless explain its
proof in details (the “Peierls argument”) because it is a useful warm-up.

Proof. Although the proof applies to all d � 2, it is best to think of the
case d = 2. The key idea is to represent configurations with the help of contours.
These are made of the dual edges that separate neighbouring the + and � spins.
A contour is a connected component. (In d = 3 one considers dual plaquettes;
more generally, in d dimensions one considers dual (d � 1)-dimensional cubes.)

We let �⇤ denote the set of contours in ⇤. We let G⇤ denote the set of sets of
disjoint contours. Notice that to a given spin configuration !, there corresponds
a unique set of contours g 2 G. To a given g 2 G, there correspond two spin
configurations (they are related by spin flips). See Fig. 4.1 for an illustration in
d = 2.

Let us introduce the weight of contours by

w(�) = e��|�| , (4.18)
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where � denote the number of dual edges (or plaquettes or hypercubes depending
on d). We can express the partition function as a sum of contour configurations:

Z⇤,� = Tr e��H
Ising
⇤ = 2

X

g2G⇤

Y

�2g

w(�). (4.19)

As for the correlation function, it satisfies

h�(3)
x

�(3)
y

i⇤ = E⇤[!x!y] = 1 � 2P⇤(!x 6= !y). (4.20)

For !x 6= !y to hold, the must be an odd number of contours in g that separate
x from y. We get an upper bound by summing over one contour that surrounds
either x or y.

P⇤(!x 6= !y) 
2

Z⇤,�

X

g2G⇤
x,y separated

Y

�2g

w(�)


2

Z⇤,�

 
X

�0:Int�03x

w(�0)
X

g:g[{�0}2G⇤

Y

�2g

w(�) + [same with y]

!
.

(4.21)

Here, Int�0 denotes the interior of �0. The definition is cumbersome but intuitive
when �0 does not touch the boundary of ⇤. When it touches the boundary, we
take the interior to be the smallest set of sites.

The following bound is clear and vital. For any �0,

2

Z⇤,�

X

g:g[{�0}2G⇤

Y

�2g

w(�)  1. (4.22)

We then obtain

P⇤(!x 6= !y) 

X

�0:Int�03x

w(�0) +
X

�0:Int�03y

w(�0). (4.23)

We show that both sums above as as small as we want by taking � large, uniformly
in N and in x, y 2 ⇤N . We do it in a slightly more complicated way than
necessary, but it will be useful when dealing with quantum spins. Let Dx(�0)
denote the length of a shortest path along neighbouring sites, that connects x
with a site close (at distance 1

2
) of �0. Whether the contour touches the boundary

of ⇤N or not, and since x 2 Int�0, we always have

Dx(�0)  |�0|. (4.24)

Let � > 1. We then haveX

�0:Int�03x

w(�0) 

X

�02�⇤

e�(��log �)|�0| ��Dx(�0). (4.25)

This can be estimated by summing over the paths leading from x to the site that
is close to the contour, and then over contours that start at this site. The sum
over paths can be written as geometric series in d directions and can be bounded
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by ( 2

��1
)d. The number of contours starting close to a give site of length ` is less

than c`

d
where cd is a constant that depends on the dimension; for d = 2 we can

take c2 = 3. We then get
X

�02�⇤

e�(��log �)|�0| ��Dx(�0) 
�

2

��1

�d�
c�1

d
e��log �

� 1
��1

. (4.26)

We have found that

P⇤(!x 6= !y)  2
�

2

��1

�d�
c�1

d
e��log �

� 1
��1

. (4.27)

This is indeed as small as we want by first choosing � > 1 and then taking � large
enough. ⇤

4.2.2. The Ising regime of the xxz-model. We consider the S = 1

2

xxz-model viewed as a perturbation of the Ising model HIsing
⇤

defined in (4.12).
Namely, with t 2 [0, 1), we let

Hxxz
⇤

= �
1

2

X

xy2E(⇤)

�
t�(1)

x
�(1)

y
+ t�(2)

x
�(2)

y
+ �(3)

x
�(3)

y
� 1

�
= HIsing

⇤
+ tV⇤. (4.28)

It is natural to expect the model to behave like the Ising model when t is
small. Ginibre proved that the existence of long-range order when d � 2, t is
small, and � is large [17]. Remarkably, Tom Kennedy [21] could extend this
result to all t 2 [0, 1), provided � is large enough (depending on how close t is
from 1).

Theorem 4.4. Let d � 2. Consider the model (4.28) with t 2 [0, 1).
There exists c > 0 and �0(t) < 1 such that for all � > �0(t), all finite
boxes ⇤, and all x, y 2 ⇤, we have

h�(3)
x

�(3)
y

i⇤ � c. (4.29)

It follows that the set of infinite-volume Gibbs states G� is not a singleton:
Taking ⇤ ! Zd (along a subsequence if necessary so as to guarantee convergence
of the state), we get a Gibbs state that does not have short-range correlations.
It is therefore not extremal, and G� has more than one element. An important
open problem is to characterise the set of translation-invariant, extremal Gibbs
states.

When t = 1 and d = 2 there is no long-range order at any positive tempera-
ture, as proved in Chapter 6. When t = 1 and d � 3, long-range order is expected
at low temperatures but proving this is a famously open problem.

The proof of Theorem 4.4 uses an extension of the Peierls argument explained
above for the classical Ising model. The method is again to express deviations
from the ground-state vectors |+i or |�i in terms of contours separating + and
� entries, and to show that these contours are ‘costly’ when � is large. The
starting-point for the quantum model (4.28) is to write the Gibbs factor e��H

XXZ
⇤
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as a sequence of classical Ising configurations evolving over time. We are then
faced with the task of controlling an evolving sequence of Peierls contours.

We now describe how to express e��H
XXZ
⇤ in terms of evolving Ising-models.

The technique, which relies on the Lie–Trotter expansion, is frequently used in
studying quantum systems. We treat all dimensions d � 2 but people should
have the d = 2 case in mind.

4.2.3. Lie–Trotter expansion. We use an expansion for the exponential
of the sum of two non-commuting matrices, which will allow us to write the
Gibbs factor e��(H

Ising
⇤ +tV⇤) as a sequence of classical Ising models: For any n⇥n

matrices a, b we have

ea+b = lim
N!1

h
e

1
N

a
�
1 + 1

N
b
�iN

. (4.30)

This is proved in Proposition A.5. We use it with a = ��HIsing
⇤

and b = ��tV⇤.
We obtain

e��H
XXZ
⇤ = lim

N!1

h
e�

�

N
H

Ising
⇤

�
1 �

�t

N
V⇤

�iN

. (4.31)

Inserting the resolution of the identity 1l =
P

!⇤2{�1,+1}⇤
|!⇤ih!⇤| between the

di↵erent factors in the product above, we get

Tr e��H
XXZ
⇤ = lim

N!1

X

!
(1)
⇤ ,...,!

(N)
⇤ 2{�1,+1}⇤

D
!(1)

⇤

��� e�
�

N
H

Ising
⇤

�
1 �

�t

N
V⇤

����!(2)

⇤

E

. . .
D
!(N)

⇤

��� e�
�

N
H

Ising
⇤

�
1 �

�t

N
V⇤

����!(1)

⇤

E
,

Tr �(3)
x

�(3)
y

e��H
XXZ
⇤ = lim

N!1

X

!
(1)
⇤ ,...,!

(N)
⇤ 2{�1,+1}⇤

D
!(1)

⇤

���!(1)
x

!(1)
y

e�
�

N
H

Ising
⇤

�
1 �

�t

N
V⇤

����!(2)

⇤

E

. . .
D
!(N)

⇤

��� e�
�

N
H

Ising
⇤

�
1 �

�t

N
V⇤

����!(1)

⇤

E
.

(4.32)

Let us focus on the expression for the partition function. The Ising hamilton-
ian is diagonal in the basis of spin configurations. Further, introducing the set of
contours g 2 G⇤ exactly as in the classical model, we have

D
!⇤

��� e�
�

N
H

Ising
⇤

���!⇤

E
= e

�

2N

P
xy

(1�!x!y) =
Y

�2g

e�
�

N
|�| . (4.33)

As for the terms involving V⇤ = t
P

(x,y)
�(+)

x
�(�)

y
, we have

D
!(i)

⇤

���
�
1��t

N
V⇤

����!(i+1)

⇤

E
=

8
><

>:

1 if !(i)

⇤
= !(i+1)

⇤
,

�t

N
if |!(i)

⇤
i = �(+)

x
�(�)

y
|!(i+1)

⇤
i for some neighbours x, y 2 ⇤,

0 otherwise.
(4.34)
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We obtain a “space-time” contour model that involves Peierls contours g(1), . . . , g(N)
2

G⇤, i = 1, . . . , N , such that g(i) and g(i+1) are identical, except for one possible
change corresponding to interchanging neighbouring + and �.

4.2.4. Space-time contours and Peierls argument. We now define the
connected components. We say that two Peierls contours are connected in the
space-time if they share at least one edge. A space-time contour is then a collec-
tion � = (�(1), . . . , �(N)) of Peierls contours at times i = 1, . . . , N . Each �(i) is a
collection of mutually disjoint Peierls contours, but � must be connected. Let �⇤

denote the set of space-time contours. The weight of a contour � 2 �⇤ is

w(�) = exp
⇣

�
�

N

NX

i=1

|�i|

⌘⇣�t

N

⌘n(�)

, (4.35)

where n(�) is the number of changes (corresponding to interchanging neighbour-
ing + and �). We recover (4.18) when n(�) = 0 and all contours �(i) are identical.
We then get the generalisation of (4.19):

Tr e��H
XXZ
⇤ = 2

X

{�1,...,�k}

kY

j=1

w(�j). (4.36)

The sum is over sets of mutually disjoint space-time contours of �⇤. Notice that,
for t = 0, the contours are constant in time and we recover the classical setting.

As in the classical case, we need to prove that the sum over contours that
surround a given site is less than 1

2
if � is large enough, uniformly in N and in

the size of the box ⇤. Let x 2 ⇤, and let � = (�(1), . . . , �(N)) 2 �⇤ a space-time
contour such that �(1) surrounds x. Let Dx(�(i)) the minimal distance between
all the connected components of �(i) and with x. We necessarily have for each
i = 1, . . . , N (compare with (4.24))

Dx(�
(i))  |�(i)

| + n(�). (4.37)
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Let ⌘ > 0 and � > 1. We can write
X

�2�⇤:�(1) surrounds x

w(�) 

X

�:�(1) surrounds x

e�
�⌘

N

P
N

j=1 |�
(j)

| e�
�

N
(1�⌘)

P
N

i=1 |�
(i)

|

⇣�t

N

⌘n(�)



X

�2�⇤:�(1) surrounds x

1

N

NX

j=1

e��⌘|�
(j)

| e�
�

N
(1�⌘)

P
N

i=1 |�
(i)

|

⇣�t

N

⌘n(�)



X

�2�⇤

1

N

NX

j=1

e�(�⌘�log �)|�
(j)

| ��Dx(�
(j)

) e�
�

N
(1�⌘)

P
N

i=1 |�
(i)

|

⇣�t�

N

⌘n(�)

=
X

�(0)2G⇤

e�(�⌘�log �)|�
(0)

| ��Dx(�
(0)

)
X

�2�⇤:�(1)=�(0)

e�
�

N
(1�⌘)

P
N

i=1 |�
(i)

|

⇣�t�

N

⌘n(�)

.

(4.38)

The second inequality was Jensen. We now choose ⌘ > 0, � > 1 such that
1�⌘ � t�. Reverse expanding, we get a surprisingly easy bound for the sum over
quantum contours:

X

�2�⇤:�(1)=�(0)

e�
�

N
(1�⌘)

P
N

i=1 |�
(i)

|

⇣�t�

N

⌘n(�)

 Tr P
�(0) e��t�H

XXX
⇤  2. (4.39)

Here P�(0) is the projector onto the two configurations with contour �(0). HXXX
⇤

is the hamiltonian (4.28) with t = 1. The last inequality follows from HXXX
⇤

� 0.
The last step is the following estimate, which does not involve N . It generalises

(4.26).

Proposition 4.5. For any � > 1 and " > 0 there is a constant �0 (that
depends on d, ", � but not on ⇤) such that for any � � �0, we have

X

�(0)2G⇤

e��|�
(0)

| ��Dx(�
(0)

)
 ".

Sketch proof. We proceed by induction on K. Let G(K)

⇤
⇢ G⇤ denote the

set of sets of contours where the number of contours is less than or equal to K.
We show that for any K we have for � > �0 that

X

�(0)2G
(K)
⇤

e��|�
(0)

| ��Dx(�
(0)

)
 ". (4.40)

When K = 1 we have G(1)

⇤
= �⇤ and we get the Ising case, see Eq. (4.26).

This establishes the beginning of the induction. We now prove the estimate for
K + 1. From the site x, we first sum over the starting site y of the closest
connected component, and then over � 2 �(y)

⇤
that “starts” at y. Then we sum
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over departing sites x1, . . . , xk (that are located on the path to the contour, or
on the contour itself) and we sum over composites with less than K connected
components. We get the bound

X

�(0)2G
(K+1)
⇤

e��|�
(0)

| ��Dx(�
(0)

)
 2d

X

`1,...,`d�1

��`1�···�`d sup
y2⇤

X

�2�
(y)
⇤

e��|�|

KX

k=0

(`1 + · · · + `d + |�|)k

k!

X

�1,...�k2G
(K)
⇤

kY

i=1

e��|�i| ��Dxi
(�i)

 2d
X

`1,...,`d�1

(� e�" )�`1�···�`d sup
y2⇤

X

�2�
(y)
⇤

e�(��")|�|

 2d(� e�"
� 1)�d sup

y2⇤

X

�2�
(y)
⇤

e�(��")|�| .

(4.41)

We can suppose that " is small enough so that � e�" > 1. The last term is smaller
than " provided � is large enough. ⇤

4.3. Long-range order using infrared bounds

Using the method of reflection positivity, it is possible to obtain a bound on
the Fourier transform of the correlation function, that is called “Infrared bound”
because it captures the physics of large scales (infrared light has small frequency /
large wavelength). We do not explain how to get the bound, this can be found in
[9, 12, 13, 2, 3]. Here we explain how to get long-range order from this bound.

It is necessary here to work in a box with periodic boundary conditions. That
is, we take ⇤ = (Z/`Z)d. We can think of ⇤` as being the box {0, 1, . . . , ` �

1}d where the set of edges E(⇤) contains the usual nearest-neighbours, but also
edges between (0, x2, . . . , xd) and (`�1, x2, . . . , xd), and similarly in other spatial
directions. The hamiltonian is HXYZ

⇤
defined in Eq. (1.37) with h = 0.

Let us recall the basic formulæ about Fourier transforms of functions on ⇤`.
The dual of ⇤` in Fourier theory is

⇤⇤

`
= 2⇡

`

�
�

`

2
+ 1, . . . , `

2

 d

⇢ [�⇡, ⇡]d. (4.42)

The Fourier transform of a function f : ⇤` ! C is

bf(k) =
X

x2⇤`

e�ikx f(x), k 2 ⇤⇤

`
, (4.43)
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where we write kx for the usual inner product
P

d

i=1
kixi. One can check that the

inverse relation is then

f(x) =
1

`d

X

k2⇤
⇤
`

eikx bf(k). (4.44)

The main object here is the correlation function hS(3)

0
S(3)

x
i⇤`,�

, which we view
as a function of x 2 ⇤`. In order to state the infrared bound, let us introduce the
function

"(k) = 2
dX

i=1

(1 � cos ki), k 2 ⇤⇤

`
. (4.45)

Notice that "(k) � 0 and "(k) ⇡ k2 around k = 0.

Theorem 4.6 (Infrared bound). Assume that ` 2 2N and that

J (1), J (3)
� 0 � J (2).

Then we have for all k 2 ⇤⇤

`
\ {0} that

\
hS(3)

0
S(3)

x i⇤`,�
(k)  S

r
d(J (1) � J (2))

J (3)

1p
"(k)

+
1

2�J (3)"(k)
.

We refer to [9, 12, 13] for a proof of this important theorem, and for detailed
information about the method of reflection positivity. It allows to prove the
existence of long-range oder in some cases, that include models where the broken
symmetry is continuous.

Theorem 4.7. Assume that ` 2 2N and that

J (3)
� J (1)

� �J (2)
� 0.

Then

1

`d

X

x2⇤`

hS(3)

0
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1

3
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S

r
d(J (1) � J (2))

J (3)

1p
"(k)

+
1

2�J (3)"(k)

!
. (4.46)

As ` ! 1 the last line converges to an integral over k 2 [�⇡, ⇡]d. The integral
of 1p

"(k)
converges when d � 2. The integral of 1

"(k)
converges when d � 3. The

lower bound is then strictly positive when d � 3 and S, � are large enough. This
theorem also establishes long-range order in the ground state (i.e. � ! 1) when
d � 2.
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Proof of Theorem 4.7. It is not too hard to establish the following cor-
relation inequality:

hS(3)

0
S(3)

0
i⇤`,�

�
1

3

P
3

i=1
hS(i)

0
S(i)

0
i⇤`,�

= 1

3
S(S + 1). (4.47)

For this we use that J (3)
x

� J (1)
x

� �J (2)
x

� 0.
Using the inverse Fourier transform on the two-point correlation function, we

get
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0
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S(3)

x i⇤`,�
(0)+

1

`d

X

k2⇤
⇤
`
\{0}

\
hS(3)

0
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x i⇤`,�
(k). (4.48)

Notice that the first term of the right side is equal to the long-range order pa-
rameter. Then
1

`d

X

x2⇤`

hS(3)

0
S(3)

x
i⇤`,�
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1
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\
hS(3)
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\
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0
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x i⇤`,�
(k).

(4.49)

Invoking the infrared bound, Theorem 4.6, for the last term, we obtain Theorem
4.7. ⇤

Exercise 4.1. Recall the decomposition (4.5). Show that

N
2
�1X

j=0

kCjk2 
N3/2

p
2

kAk2.

Exercise 4.2.

(1) Show that the ground states of the model (4.28) with t 2 [0, 1] are the
constant vectors |+i and |�i.

(2) Now consider the antiferromagnetic models with hamiltonians �H Ising

⇤
+

tV⇤ and �H Ising

⇤
� tV⇤, t 2 [0, 1]. Are the ground states given by the anti-

ferromagnetic configurations |!i where !x = (�1)kxk1 or !x = �(�1)kxk1?

Exercise 4.3. Show that Hxxx
⇤

� 0.


