
APPENDIX A

Mathematical supplement

A.1. Matrices and matrix norms

We consider n⇥n matrices with complex entries. Such a matrix a is hermitian
if it equals its conjugate transpose, a = a⇤; it is non-negative if h , a i � 0 for
all vectors  . A hermitian matrix a is diagonalizable: there is a unitary matrix U
(meaning U⇤ = U�1) such that U⇤aU is diagonal. The eigenvalues of a hermitian
matrix a are all real. A hermitian matrix is non-negative if and only if all its
eigenvalues are non-negative.

If D = diag (d1, . . . , dn) is a diagonal matrix, and f is a real-valued function
whose domain contains all the entries di of D, then we define

f(D) = diag (f(d1), . . . , f(dn)). (A.1)

This definition extends to hermitian matrices via diagonalization: If a is an her-
mitian matrix and f is a real-valued function whose domain contains the spectrum
of a, and a is diagonalized as a = Udiag (�1, . . . ,�n)U⇤, then we define

f(a) = Udiag (f(�1), . . . , f(�n))U⇤. (A.2)

For an arbitrary n ⇥ n matrix a, the matrix a⇤a is hermitian. We define the
absolute value by |a| = (a⇤a)

1
2 , where the square root of a⇤a is defined as above.

Then |a| is hermitian. The p-norm of a matrix is then defined as

kakp = (Tr |a|
p)1/p. (A.3)

We also define the operator norm of a by

kak = sup
 6=0

ka k

k k
(A.4)

where k k =
� P

i
| i|

2
�1/2

is the usual vector norm. Note that kak1 = limp!1 kakp =
kak, the operator norm of a.

A.2. Hölder inequality for matrices

Proposition A.1 (Hölder inequality for matrices). If 1  p, q, r 

1 with 1

p
+ 1

q
= 1

r
, we have

kabkr  kakpkbkq.
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It follows from a simple induction that

���
nY

j=1

aj

���
r



nY

j=1

kajkpj
(A.5)

whenever 1  r, p1, . . . , pn with
P

n

j=1

1

pj

= 1

r
.

There are no short proofs in the case of matrices. The proof here is due to
Fröhlich [1978] and it uses chessboard estimates. The proof of Proposition A.1
can be found after that of Lemma A.4.

Lemma A.2 (Chessboard estimate). For any n 2 N and any matrices
a1, . . . , a2n, we have

��Tr a1 . . . a2n

�� 

2nY

i=1

⇣
Tr (aia

⇤

i
)n

⌘1/2n

.

Proof. Since (a, b) 7! Tr a⇤b is an inner product, we have the Cauchy–
Schwarz inequality: |Trab|2  Tr a⇤aTr b⇤b. The following inequality follows:

��Tr a1 . . . a2n

��2  Tr
�
a1 . . . ana

⇤

n
. . . a⇤

1

�
Tr

�
a⇤

2n
. . . a⇤

n+1
an+1 . . . a2n

�
. (A.6)

This allows to use a reflection positivity argument. By replacing ai with ai/
p

Tr (aia⇤

i
)n

it is enough to prove the inequality for matrices that satisfy Tr (aia⇤

i
)n = 1; the

general result follows from scaling. Note that the set of such matrices is compact.
Let a1, . . . , a2n be matrices that maximise |Tr a1 . . . a2n|, with maximum num-

ber of matching neighbours ai+1 = a⇤

i
. Suppose there exists an index j such

that aj+1 6= a⇤

j
. Using cyclicity, we can assume that j = n. By the inequality

(A.6), a1, . . . , an, a⇤

n
, . . . , a⇤

1
and a⇤

2n
, . . . , a⇤

n+1
, an+1, . . . , a2n are also maximisers.

At least one has strictly more matching neighbours, hence a contradiction. The
maximum is then Tr (aa⇤)n for some matrix a 2 {a1, . . . , an}, which is equal to
1. ⇤

Chessboard estimates allow to prove what is essentially the case r = 1 of
Hölder’s inequality.

Corollary A.3. We have

|Tr a1 . . . an| 

nY

i=1

kaikpi

for all n and all pi � 1 such that
P

n

i=1

1

pi

= 1.
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Proof. It su�ces to consider rational pi, by continuity. Let ` be a positive
integer such that 2`/pi is integer for all i. Let ai = Ui|ai| be the polar decompo-
sition of ai, and let

bi = |ai|
pi/2`, b̂i = Ui|ai|

pi/2`. (A.7)

Then ai = b̂ib
(2`/pi)�1

i
, and we have

��Tr a1 . . . an

�� =
��Tr b̂1 b1 . . . b1| {z }

(2`/p1)�1

. . . b̂n bn . . . bn| {z }
(2`/pn)�1

��



nY

i=1

(Tr |ai|
pi)1/pi

=
nY

i=1

kaikpi
.

(A.8)

The inequality follows from Lemma A.2 and from the identities

Tr (bib
⇤

i
)` = Tr (b̂ib̂

⇤

i
)` = Tr |ai|

pi . (A.9)

⇤

Lemma A.4. Let r, r0
2 [1, 1] such that 1

r
+ 1

r0 = 1. Then for any square
matrix a, we have

kakr = max
kck

r0=1

Tr c⇤a.

Proof. The right side is smaller by Corollary A.3:
��Tr c⇤a

��  kckr0kakr = kakr. (A.10)

In order to check that this inequality is saturated, let a = U |a| be the polar
decomposition of a, and choose c = kak

1�r

r
U |a|

r�1. Then kckr0 = 1 and Tr c⇤a =
kakr. ⇤

Proof of Proposition A.1. Starting with Lemma A.4 and then using Corol-
lary A.3 with a1 = c⇤, a2 = a, a3 = b and p1 = r, p2 = p, p3 = q, we have

kabkr = sup
kck

r0=1

Tr c⇤ab

 sup
kck

r0=1

kckr0kakpkbkq.
(A.11)

⇤
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A.3. Trotter and Duhamel

We now review a ueful expansion for the exponential of a sum of two non-
commuting operators, namely the Duhamel formula.

Proposition A.5 (Lie–Trotter formula). Let a, b be n⇥n matrices. Then

ea+b = lim
N!1

⇣
e

1
N

a e
1
N

b

⌘N

= lim
N!1

h
e

1
N

a
�
1 + 1

N
b
�iN

.

Proof. We prove the second formula — the mild changes for the other for-
mula are straightforward. Let KN be the matrix such that

e
1
N

a
�
1 + 1

N
b
�

= 1 + 1

N
(a + b) + KN . (A.12)

It is clear that kKNk = O( 1

N2 ). We have
h
e

1
N

a
�
1 + 1

N
b
�iN

=
⇣
1 + 1

N
(a + b)

⌘N

+RN , (A.13)

where RN is a matrix whose norm satisfies

kRNk 

N�1X

k=0

�
N

k

�
k1 + 1

N
(a + b)kk

kKNk
N�k = O( 1

N
). (A.14)

The first term in the right side of (A.13) converges to ea+b . ⇤

Proposition A.6 (Duhamel formula). Let a, b be n ⇥ n matrices. Then

ea+b = ea +

Z
1

0

eta b e(1�t)(a+b) dt

=
X

k�0

Z

0<t1<···<tk<1

dt1 . . . dtk et1a b e(t2�t1)a b . . . b e(1�tk)a .

Proof. Let F (s) be the matrix-valued function

F (s) = esa +

Z
s

0

eta b e(s�t)(a+b) dt. (A.15)

We show that, for all s,

es(a+b) = F (s). (A.16)

The derivative of F (s) is

F 0(s) = esa a + esa b +

Z
s

0

eta b e(s�t)(a+b) (a + b)dt = F (s)(a + b). (A.17)
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On the other hand, the derivative of es(a+b) is es(a+b) (a+ b). The identity (A.16)
clearly holds for s = 0 and, since both sides satisfy the same di↵erential equation,
they must be equal for all s.

We can iterate Duhamel’s formula N times so as to get

ea+b =
NX

k=0

Z

0<t1<···<tk<1

dt1 . . . dtk et1a b e(t2�t1)a b . . . b e(1�tk)a

+

Z

0<t1<···<tN<1

dt1 . . . dtk et1a b e(t2�t1)a b . . . b
h
e(1�tN )(a+b)

� e(1�tN )a

i
.

(A.18)

Using k eta
k  etkak , the last line is less than 2 ekak+kbk kbk

N

N !
and so it vanishes

in the limit N ! 1. The summand is less than ekak kbk
k

k!
, so that the sum is

absolutely convergent. ⇤

A.4. Further matrix inequalities

Proposition A.7 (Golden–Thompson inequality). Let a, b be her-
mitian matrices. Then

Tr
�
ea+b

�
 Tr

�
ea eb

�
.

Proof. Hölder’s inequality, in the form (A.5) with r = 1, pj = n and aj = ab,
implies that |Tr (ab)n

|  kabkn

n
. The latter is equal to Tr (a2b2)n/2 since a, b are

hermitian. Letting n be a power of 2, we can iterate and we get

Tr (ab)n
 Tr anbn. (A.19)

We use this inequality with a 7! e
1
n

a and b 7! e
1
n

b , which gives

Tr
⇣

e
1
n

a e
1
n

b

⌘n

 Tr ea eb . (A.20)

The left side converges to Tr ea+b as n ! 1 by the Trotter formula (Proposition
A.5). ⇤

Proposition A.8 (Klein inequality). Let f be a convex di↵erentiable
function, and a, b be hermitian matrices with eigenvalues in the domain of
f . Then

Tr
⇥
f(a) � f(b) � (a � b)f 0(b)

⇤
� 0.

With f(s) = es , exchanging a and b, we get

Tr
�
ea

� eb
�

 Tr (a � b) ea . (A.21)
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Proof. Let (�i) and ( i) be orthonormal bases of eigenvectors of a and b,
and let (↵i) and (�i) the eigenvalues. Let cij = h�i, ji. Then

⌦
�i,

⇥
f(a) � f(b)�(a � b)f 0(b)

⇤
�i

↵

= f(↵i) �

X

j

|cij|
2f(�j) �

X

j

|cij|
2(↵i � �j)f

0(�j)

=
X

j

|cij|
2
⇥
f(↵i) � f(�j) � (↵i � �j)f

0(�j)
⇤

� 0.

(A.22)

⇤

Proposition A.9 (Peierls–Bogolubov inequality). Let f be convex
on R and a, h be hermitian matrices such that Tr e�h = 1. Then

f
�
Tr a e�h

�
 Tr f(a) e�h .

Proof. Let (�i) and (⌘i) be the eigenvectors and eigenvalues of h. Using
Jensen’s inequality twice,

f
�
Tr a e�h

�
= f

⇣X

i

h�i, a�ii e�⌘i

⌘


X

i

f
�
h�i, a�ii

�
e�⌘i



X

i

h�i, f(a)�ii e�⌘i = Tr f(a) e�h .
(A.23)

⇤

Proposition A.10 (Peierls inequality). Let a be a hermitian matrix
and (�i) an orthonormal set of vectors. Then

X

i

eh�i,a�ii  Tr ea .

Proof. Let ↵j be the eigenvalues of a with corresponding orthonormal eigen-
vectors  j. Then

eh�i,a�ii = exp

⇢X

j

↵j|h�i, ji|
2

�


X

j

|h�i, ji|
2 e↵j . (A.24)

We used Jensen’s inequality and
X

j

|h�i, ji|
2 = Tr |�iih�i| = 1. (A.25)

The claim follows by summing over i, using
P

i
|h�i, ji|

2 = Tr | jih j| = 1. ⇤
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A.5. About convex functions

Here is a simple result about convex functions on R. Recall that the right
and left derivatives of a convex function f(s) at s = 0 are given respectively by
@+f(0) = infs>0

f(s)�f(0)

s
and @�f(0) = sup

s<0

f(s)�f(0)

s
.

Proposition A.11. Let fn be a sequence of continuously di↵erentiable,
convex functions on R such that fn ! f pointwise. For each m 2

[@�f(0), @+f(0)] there is a sequence sn ! 0 such that m = limn!1 f 0

n
(sn).

Proof. We claim the following: for any ", � > 0 there is N = N(", �) such
that for any n > N we have

f 0

n
(�) > @+f(0) � ", f 0

n
(��) < @�f(0) + ". (A.26)

The result then follows using the mean value theorem for the continuous function
f 0

n
(s): if it is the case that m 2 [@�f(0) + ", @+f(0) � "] then there is some

sn 2 [��, �] satisfying f 0

n
(sn) = m, otherwise we may take sn = � or sn = ��.

We prove the claim for @+f(0). We have

f 0

n
(�) �

fn(�) � fn(�/2)

�/2
,

f(�/2) � f(0)

�/2
� @+f(0). (A.27)

Moreover,

lim
n!1

fn(�) � fn(�/2)

�/2
�

f(�/2) � f(0)

�/2
=

f(�) � f(�/2)

�/2
�

f(�/2) � f(0)

�/2
� 0.

(A.28)

So for n large enough we have

f 0

n
(�) �

fn(�) � fn(�/2)

�/2
�

f(�/2) � f(0)

�/2
� " � @+f(0) � ", (A.29)

as claimed. ⇤


