APPENDIX A

Mathematical supplement

A.1. Matrices and matrix norms

We consider n x n matrices with complex entries. Such a matrix a is hermitian
if it equals its conjugate transpose, a = a*; it is non-negative if (¢, arp) > 0 for
all vectors ¢. A hermitian matrix a is diagonalizable: there is a unitary matrix U
(meaning U* = U~!) such that U*aU is diagonal. The eigenvalues of a hermitian
matrix a are all real. A hermitian matrix is non-negative if and only if all its
eigenvalues are non-negative.

If D = diag(dy,...,d,) is a diagonal matrix, and f is a real-valued function
whose domain contains all the entries d; of D, then we define
f(D) =diag (f(dy),..., f(dy)). (A1)

This definition extends to hermitian matrices via diagonalization: If a is an her-
mitian matrix and f is a real-valued function whose domain contains the spectrum
of a, and a is diagonalized as a = Udiag (A1, ..., A\,)U*, then we define

fla) = Udiag (f(M1),..., f(A\)U™. (A.2)
For an arbitrary n X n matrix a, the matrix a*a is hermitian. We define the

absolute value by |a| = (a*a)z, where the square root of a*a is defined as above.
Then |a| is hermitian. The p-norm of a matrix is then defined as

lall, = (Tr|al)"/?. (A3)

We also define the operator norm of a by

lag|]
la]| = sup ——— (A4)
w0 [V
where [[¢ = (3, lwi\Q)l/Q is the usual vector norm. Note that ||a||ec = lim, 0 ||al|, =

||a]|, the operator norm of a.
A.2. Holder inequality for matrices

PropoSITION A.1 (Holder inequality for matrices). If 1 < p,q,r <
oo with % + % = %, we have

llabll» < llallplbll4-
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It follows from a simple induction that

n n
) . a9
=1 =

whenever 1 <r,pi,...,p, with 377, z% =1
J

There are no short proofs in the case of matrices. The proof here is due to
Frohlich [1978] and it uses chessboard estimates. The proof of Proposition A.1
can be found after that of Lemma A 4.

LEMMA A.2 (Chessboard estimate). For any n € N and any matrices
ai,...,as,, we have

n 1/2n
|Tr ap .. .aQn} < H(Tr (amf)”) :
i=1

PROOF. Since (a,b) — Tra*b is an inner product, we have the Cauchy—
Schwarz inequality: |Trab|* < Tra*aTr b*b. The following inequality follows:

*

2 * * *
|Tra1 .. .a2n| <Tr (a1 .. .anan...al) Tr (a2n...an+1an+1 .. .agn). (A.6)

This allows to use a reflection positivity argument. By replacing a; with a;/+/Tr (a;a;)”
it is enough to prove the inequality for matrices that satisfy Tr (a;af)™ = 1; the
general result follows from scaling. Note that the set of such matrices is compact.

Let aq, ..., as, be matrices that maximise |Tra; . . . as,|, with maximum num-
ber of matching neighbours a;.1 = a}. Suppose there exists an index j such

K3
that a;11 # a}. Using cyclicity, we can assume that j = n. By the inequality

(A6), ai,...,an,a),...,a; and a3,,...,a5 1, 0nt1,- .., G2, are also maximisers.
At least one has strictly more matching neighbours, hence a contradiction. The
maximum is then Tr (aa*)" for some matrix a € {ay,...,a,}, which is equal to
1. ([l

Chessboard estimates allow to prove what is essentially the case r = 1 of
Holder’s inequality.

COROLLARY A.3. We have
n
Trar ... an| < ] llailly,
=1

for all n and all p; > 1 such that ", 1% =1,
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PROOF. It suffices to consider rational p;, by continuity. Let ¢ be a positive
integer such that 2¢/p; is integer for all i. Let a; = U;|a;| be the polar decompo-
sition of a;, and let

b = ||, b; = Uy|a; [P/, (A7)
Then a; = I;ib(%/pi)_l, and we have

7

Trai...an| = |Trbi b .. .by...byby.. b,

N
(2¢/p1)—1 (2¢/pn)-1
< H(Tr |a; pi)l/pi (A.8)
i=1
= H s |-
i=1
The inequality follows from Lemma A.2 and from the identities
Tr (bib?)" = Tr (bib?)* = Tr |a|?". (A.9)
O

LEMMA A.4. Let r,r’ € [1,00] such that 1 + & =1. Then for any square
matrix a, we have

|||, = max Trc*a.
llell =1

ProOOF. The right side is smaller by Corollary A.3:
| Txcal < lell[lall- = llall.. (A.10)

In order to check that this inequality is saturated, let a = Ula| be the polar
decomposition of a, and choose ¢ = ||la||}~"Ula|"". Then ||¢||,» = 1 and Trc*a =
lally- O

PROOF OF PROPOSITION A.1l. Starting with Lemma A.4 and then using Corol-
lary A.3 with a1 = ¢*, as = a, a3 = b and p; = r, py = p, p3 = ¢, we have

|lab||, = sup Trc*ab
”C“rlzl (A 11)
< sup e[l |lallp[lbll4-

llell,r=1
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A.3. Trotter and Duhamel
We now review a ueful expansion for the exponential of a sum of two non-

commuting operators, namely the Duhamel formula.

PROPOSITION A.5 (Lie-Trotter formula). Let a,b be n xn matrices. Then

N N
e = lim <e%“ e%b> = lim [e%“ (1—}—%())}

N—oo N—o0

Proor. We prove the second formula — the mild changes for the other for-
mula are straightforward. Let Ky be the matrix such that

e¥ (14 b)) =1+ L(a+b) + Ky. (A1)
It is clear that || Kn|| = O(5z). We have
+a 1 N 1 N
[eN (1+ Nb>] = <1 + w(a+ b)> +Rx, (A.13)
where Ry is a matrix whose norm satisfies
N-1
IRy < Y () 11+ Fla+ 0" [Kn |V = O(F)- (A14)
k=0
The first term in the right side of (A.13) converges to e**?. O

PROPOSITION A.6 (Duhamel formula). Let a,b be n x n matrices. Then

1
e@tt — o +/ ete pe(1=0(atb) gy
0

= / dty . ..dt, el pelta—tiap  pao(l—ti)a
k>0 ¥ 0<t1<-<tp<1

PROOF. Let F(s) be the matrix-valued function
F(s) = €™ +/ el pels=tatd) q¢ (A.15)
0

We show that, for all s,
et — p(s). (A.16)
The derivative of F'(s) is

F'(s)=e*a+ b+ /0 ' pel=D@t) (g 4 b)dt = F(s)(a +b). (A.17)
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On the other hand, the derivative of e*(¢*?) is e*(@*% (q +b). The identity (A.16)
clearly holds for s = 0 and, since both sides satisfy the same differential equation,
they must be equal for all s.

We can iterate Duhamel’s formula N times so as to get

N
et = / dty ... dtger® ezt | pel=he
k=0 Y 0<t1 <<t <1

(A.18)
+ / dt, ... dt, etlabe(tz_“)“b...b[e(l_tN)(“*b) — ell=tnja |
O<t1<--<tny<l1

N
Using || || < el?ll | the last line is less than 2elel+IPl T and so it vanishes

in the limit N — oo. The summand is less than elll ||z;§_|!|k’ so that the sum is
absolutely convergent. O

A.4. Further matrix inequalities

PROPOSITION A.7 (Golden—Thompson inequality). Let a,b be her-
matian matrices. Then

Tr(e“+b) < Tr(ea eb).

PRrROOF. Hélder’s inequality, in the form (A.5) with r = 1, p; = n and a; = ab,
implies that |Tr (ab)"| < ||ab||?. The latter is equal to Tr (a%b*)™/? since a,b are
hermitian. Letting n be a power of 2, we can iterate and we get

Tr (ab)" < Tra"b". (A.19)
We use this inequality with a — en® and b — ex’, which gives
Tr (e%a e%b) < Tre® e, (A.20)

The left side converges to Tr e**? as n — oo by the Trotter formula (Proposition
A5). 0J

ProrosITION A.8 (Klein inequality). Let f be a convex differentiable
function, and a,b be hermitian matrices with eigenvalues in the domain of

f. Then
Tr [f(a) = f(b) — (a = b)f'(b)] > 0.

With f(s) = e°, exchanging a and b, we get
Tr (e —e”) <Tr(a—b)e". (A.21)
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PROOF. Let (¢;) and (¢;) be orthonormal bases of eigenvectors of a and b,
and let (o;) and (3;) the eigenvalues. Let ¢;; = (¢4, ;). Then

(61, [f(a) = F(B)=(a = 0)f' ()] &)
= flow) Z e £(8)) Z lcij*(a )f'(8))

= Z |c,;j| (o) — f(B;) — (0éz' —B)f (5])}

> 0.

(A.22)

ProOPOSITION A.9 (Peierls—Bogolubov inequality). Let f be convex
on R and a, h be hermitian matrices such that Tr e™" = 1. Then

f(Trae™) <Tr f(a)e™

PROOF. Let (¢;) and (n;) be the eigenvectors and eigenvalues of h. Using
Jensen’s inequality twice,

F(Trae) = F((onas) e ) < 30 £ ((gnas)) e
<2 {on f@)o)e™ =T fla) e

(A.23)

PropPOSITION A.10 (Peierls inequality). Let a be a hermitian matriz
and (¢;) an orthonormal set of vectors. Then

Z el¢iadi) < Tr e”.

PROOF. Let a; be the eigenvalues of a with corresponding orthonormal eigen-
vectors ;. Then

<¢Z adi) _eXp{ZOéj| d)z,% } Z| ¢l7wj ‘2 e . (A.24)

We used Jensen’s inequality and

3 l{n ) = Telod (i = 1. a)

The claim follows by summing over ¢, using >, [(¢;, ¢;)|> = Tr [¢;)(¢;| = 1. O
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A.5. About convex functions

Here is a simple result about convex functions on R. Recall that the right
and left derivatives of a convex function f(s) at s = 0 are given respectively by

0, £(0) = infup LD and §_£(0) = sup, o LOLO.

ProprosiTION A.11. Let f, be a sequence of continuously differentiable,
convexr functions on R such that f, — f pointwise. For each m €&
[0_f(0),04 f(0)] there is a sequence s, — 0 such that m = lim,_, f!(sp).

PRrROOF. We claim the following: for any ,0 > 0 there is N = N(g,4) such
that for any n > N we have

fr(8) > 0, f(0) —e, fr(=0) < 0_f(0)+e. (A.26)
The result then follows using the mean value theorem for the continuous function
fi(s): if it is the case that m € [0_f(0) + £,0,f(0) — €] then there is some
sp € [0, 6] satistying f)(s,) = m, otherwise we may take s, =0 or s, = —9.
We prove the claim for 9, f(0). We have

o [n(9) = fn(6/2) f(6/2) = f(0)

fn(0) > 5/2 ) 572 > 0, f(0). (A.27)
Moreover,
Lo T8 = 1a(6/2) _ J0/2)~ F0) _ [O) = F(/2) _ G/~ 0)
n—o0 5/2 5/2 5/2 9/2 -
So for n large enough we have e
futs) 2 OB o JORZIO o5 o )2

as claimed. ]



