APPENDIX A

Mathematical supplement

A.1. Matrices and matrix norms

We consider $n \times n$ matrices with complex entries. Such a matrix a is hermitian if it equals its conjugate transpose, $a=a^*$; it is non-negative if $\langle \psi, a\psi \rangle \geq 0$ for all vectors ψ . A hermitian matrix a is diagonalizable: there is a unitary matrix U (meaning $U^*=U^{-1}$) such that U^*aU is diagonal. The eigenvalues of a hermitian matrix a are all real. A hermitian matrix is non-negative if and only if all its eigenvalues are non-negative.

If $D = \text{diag}(d_1, \ldots, d_n)$ is a diagonal matrix, and f is a real-valued function whose domain contains all the entries d_i of D, then we define

$$f(D) = \operatorname{diag}(f(d_1), \dots, f(d_n)). \tag{A.1}$$

This definition extends to hermitian matrices via diagonalization: If a is an hermitian matrix and f is a real-valued function whose domain contains the spectrum of a, and a is diagonalized as $a = U \operatorname{diag}(\lambda_1, \ldots, \lambda_n) U^*$, then we define

$$f(a) = U \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) U^*.$$
(A.2)

For an arbitrary $n \times n$ matrix a, the matrix a^*a is hermitian. We define the absolute value by $|a| = (a^*a)^{\frac{1}{2}}$, where the square root of a^*a is defined as above. Then |a| is hermitian. The p-norm of a matrix is then defined as

$$||a||_p = (\operatorname{Tr} |a|^p)^{1/p}.$$
 (A.3)

We also define the *operator norm* of a by

$$||a|| = \sup_{\psi \neq 0} \frac{||a\psi||}{||\psi||}$$
 (A.4)

where $\|\psi\| = \left(\sum_i |\psi_i|^2\right)^{1/2}$ is the usual vector norm. Note that $\|a\|_{\infty} = \lim_{p \to \infty} \|a\|_p = \|a\|$, the operator norm of a.

A.2. Hölder inequality for matrices

PROPOSITION A.1 (Hölder inequality for matrices). If $1 \le p, q, r \le \infty$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, we have

$$||ab||_r \le ||a||_p ||b||_q.$$

It follows from a simple induction that

$$\left\| \prod_{j=1}^{n} a_{j} \right\|_{r} \leq \prod_{j=1}^{n} \|a_{j}\|_{p_{j}} \tag{A.5}$$

whenever $1 \leq r, p_1, \ldots, p_n$ with $\sum_{j=1}^n \frac{1}{p_j} = \frac{1}{r}$.

There are no short proofs in the case of matrices. The proof here is due to Fröhlich [1978] and it uses chessboard estimates. The proof of Proposition A.1 can be found after that of Lemma A.4.

LEMMA A.2 (Chessboard estimate). For any $n \in \mathbb{N}$ and any matrices a_1, \ldots, a_{2n} , we have

$$\left|\operatorname{Tr} a_1 \dots a_{2n}\right| \leq \prod_{i=1}^{2n} \left(\operatorname{Tr} \left(a_i a_i^*\right)^n\right)^{1/2n}.$$

PROOF. Since $(a,b) \mapsto \operatorname{Tr} a^*b$ is an inner product, we have the Cauchy–Schwarz inequality: $|Trab|^2 \leq \operatorname{Tr} a^*a\operatorname{Tr} b^*b$. The following inequality follows:

$$\left| \operatorname{Tr} a_1 \dots a_{2n} \right|^2 \le \operatorname{Tr} \left(a_1 \dots a_n a_n^* \dots a_1^* \right) \operatorname{Tr} \left(a_{2n}^* \dots a_{n+1}^* a_{n+1} \dots a_{2n} \right).$$
 (A.6)

This allows to use a reflection positivity argument. By replacing a_i with $a_i/\sqrt{\text{Tr}(a_i a_i^*)^n}$ it is enough to prove the inequality for matrices that satisfy $\text{Tr}(a_i a_i^*)^n = 1$; the general result follows from scaling. Note that the set of such matrices is compact.

Let a_1, \ldots, a_{2n} be matrices that maximise $|\operatorname{Tr} a_1 \ldots a_{2n}|$, with maximum number of matching neighbours $a_{i+1} = a_i^*$. Suppose there exists an index j such that $a_{j+1} \neq a_j^*$. Using cyclicity, we can assume that j = n. By the inequality $(A.6), a_1, \ldots, a_n, a_n^*, \ldots, a_1^*$ and $a_{2n}^*, \ldots, a_{n+1}^*, a_{n+1}, \ldots, a_{2n}$ are also maximisers. At least one has strictly more matching neighbours, hence a contradiction. The maximum is then $\operatorname{Tr}(aa^*)^n$ for some matrix $a \in \{a_1, \ldots, a_n\}$, which is equal to 1.

Chessboard estimates allow to prove what is essentially the case r=1 of Hölder's inequality.

COROLLARY A.3. We have

$$|\operatorname{Tr} a_1 \dots a_n| \le \prod_{i=1}^n ||a_i||_{p_i}$$

for all n and all $p_i \ge 1$ such that $\sum_{i=1}^n \frac{1}{p_i} = 1$.

PROOF. It suffices to consider rational p_i , by continuity. Let ℓ be a positive integer such that $2\ell/p_i$ is integer for all i. Let $a_i = U_i|a_i|$ be the polar decomposition of a_i , and let

$$b_i = |a_i|^{p_i/2\ell}, \qquad \hat{b}_i = U_i |a_i|^{p_i/2\ell}.$$
 (A.7)

Then $a_i = \hat{b}_i b_i^{(2\ell/p_i)-1}$, and we have

$$\left|\operatorname{Tr} a_{1} \dots a_{n}\right| = \left|\operatorname{Tr} \hat{b}_{1} \underbrace{b_{1} \dots b_{1}}_{(2\ell/p_{1})-1} \dots \hat{b}_{n} \underbrace{b_{n} \dots b_{n}}_{(2\ell/p_{n})-1}\right|$$

$$\leq \prod_{i=1}^{n} (\operatorname{Tr} |a_{i}|^{p_{i}})^{1/p_{i}}$$

$$= \prod_{i=1}^{n} ||a_{i}||_{p_{i}}.$$
(A.8)

The inequality follows from Lemma A.2 and from the identities

$$\operatorname{Tr}(b_i b_i^*)^{\ell} = \operatorname{Tr}(\hat{b}_i \hat{b}_i^*)^{\ell} = \operatorname{Tr}|a_i|^{p_i}.$$
(A.9)

LEMMA A.4. Let $r, r' \in [1, \infty]$ such that $\frac{1}{r} + \frac{1}{r'} = 1$. Then for any square matrix a, we have

$$||a||_r = \max_{||c||_{r'}=1} \operatorname{Tr} c^* a.$$

PROOF. The right side is smaller by Corollary A.3:

$$\left| \operatorname{Tr} c^* a \right| \le \|c\|_{r'} \|a\|_r = \|a\|_r.$$
 (A.10)

In order to check that this inequality is saturated, let a = U|a| be the polar decomposition of a, and choose $c = ||a||_r^{1-r}U|a|^{r-1}$. Then $||c||_{r'} = 1$ and $\operatorname{Tr} c^*a = ||a||_r$.

PROOF OF PROPOSITION A.1. Starting with Lemma A.4 and then using Corollary A.3 with $a_1 = c^*$, $a_2 = a$, $a_3 = b$ and $p_1 = r$, $p_2 = p$, $p_3 = q$, we have

$$||ab||_{r} = \sup_{||c||_{r'}=1} \operatorname{Tr} c^{*}ab$$

$$\leq \sup_{||c||_{r'}=1} ||c||_{r'} ||a||_{p} ||b||_{q}.$$
(A.11)

A.3. Trotter and Duhamel

We now review a ueful expansion for the exponential of a sum of two noncommuting operators, namely the Duhamel formula.

Proposition A.5 (Lie–Trotter formula). Let a, b be $n \times n$ matrices. Then

$$e^{a+b} = \lim_{N \to \infty} \left(e^{\frac{1}{N}a} e^{\frac{1}{N}b} \right)^N = \lim_{N \to \infty} \left[e^{\frac{1}{N}a} \left(1 + \frac{1}{N}b \right) \right]^N.$$

PROOF. We prove the second formula — the mild changes for the other formula are straightforward. Let K_N be the matrix such that

$$e^{\frac{1}{N}a}\left(1+\frac{1}{N}b\right) = 1+\frac{1}{N}(a+b)+K_N.$$
 (A.12)

It is clear that $||K_N|| = O(\frac{1}{N^2})$. We have

$$\left[e^{\frac{1}{N}a} \left(1 + \frac{1}{N}b \right) \right]^N = \left(1 + \frac{1}{N}(a+b) \right)^N + R_N,$$
 (A.13)

where R_N is a matrix whose norm satisfies

$$||R_N|| \le \sum_{k=0}^{N-1} {N \choose k} ||1 + \frac{1}{N}(a+b)||^k ||K_N||^{N-k} = O(\frac{1}{N}).$$
 (A.14)

The first term in the right side of (A.13) converges to e^{a+b} .

Proposition A.6 (Duhamel formula). Let a, b be $n \times n$ matrices. Then

$$e^{a+b} = e^{a} + \int_{0}^{1} e^{ta} b e^{(1-t)(a+b)} dt$$

$$= \sum_{k\geq 0} \int_{0 < t_{1} < \dots < t_{k} < 1} dt_{1} \dots dt_{k} e^{t_{1}a} b e^{(t_{2}-t_{1})a} b \dots b e^{(1-t_{k})a}.$$

PROOF. Let F(s) be the matrix-valued function

$$F(s) = e^{sa} + \int_0^s e^{ta} b e^{(s-t)(a+b)} dt.$$
 (A.15)

We show that, for all s,

$$e^{s(a+b)} = F(s). \tag{A.16}$$

The derivative of F(s) is

$$F'(s) = e^{sa} a + e^{sa} b + \int_0^s e^{ta} b e^{(s-t)(a+b)} (a+b) dt = F(s)(a+b).$$
 (A.17)

On the other hand, the derivative of $e^{s(a+b)}$ is $e^{s(a+b)}(a+b)$. The identity (A.16) clearly holds for s=0 and, since both sides satisfy the same differential equation, they must be equal for all s.

We can iterate Duhamel's formula N times so as to get

$$e^{a+b} = \sum_{k=0}^{N} \int_{0 < t_1 < \dots < t_k < 1} dt_1 \dots dt_k e^{t_1 a} b e^{(t_2 - t_1) a} b \dots b e^{(1 - t_k) a}$$

$$+ \int_{0 < t_1 < \dots < t_N < 1} dt_1 \dots dt_k e^{t_1 a} b e^{(t_2 - t_1) a} b \dots b \left[e^{(1 - t_N)(a+b)} - e^{(1 - t_N) a} \right].$$
(A.18)

Using $\|e^{ta}\| \le e^{t\|a\|}$, the last line is less than $2e^{\|a\|+\|b\|}\frac{\|b\|^N}{N!}$ and so it vanishes in the limit $N \to \infty$. The summand is less than $e^{\|a\|}\frac{\|b\|^N}{k!}$, so that the sum is absolutely convergent.

A.4. Further matrix inequalities

PROPOSITION A.7 (Golden-Thompson inequality). Let a, b be hermitian matrices. Then

$$\operatorname{Tr}\left(e^{a+b}\right) \leq \operatorname{Tr}\left(e^a e^b\right).$$

PROOF. Hölder's inequality, in the form (A.5) with r = 1, $p_j = n$ and $a_j = ab$, implies that $|\operatorname{Tr}(ab)^n| \leq ||ab||_n^n$. The latter is equal to $\operatorname{Tr}(a^2b^2)^{n/2}$ since a, b are hermitian. Letting n be a power of 2, we can iterate and we get

$$\operatorname{Tr}(ab)^n \le \operatorname{Tr} a^n b^n. \tag{A.19}$$

We use this inequality with $a \mapsto e^{\frac{1}{n}a}$ and $b \mapsto e^{\frac{1}{n}b}$, which gives

$$\operatorname{Tr}\left(e^{\frac{1}{n}a} e^{\frac{1}{n}b}\right)^n \le \operatorname{Tr} e^a e^b. \tag{A.20}$$

The left side converges to Tr e^{a+b} as $n \to \infty$ by the Trotter formula (Proposition A.5).

PROPOSITION A.8 (Klein inequality). Let f be a convex differentiable function, and a, b be hermitian matrices with eigenvalues in the domain of f. Then

$$Tr \left[f(a) - f(b) - (a - b)f'(b) \right] \ge 0.$$

With $f(s) = e^s$, exchanging a and b, we get

$$\operatorname{Tr}\left(e^{a}-e^{b}\right) \leq \operatorname{Tr}\left(a-b\right)e^{a}$$
. (A.21)

PROOF. Let (ϕ_i) and (ψ_i) be orthonormal bases of eigenvectors of a and b, and let (α_i) and (β_i) the eigenvalues. Let $c_{ij} = \langle \phi_i, \psi_j \rangle$. Then

$$\langle \phi_i, [f(a) - f(b) - (a - b)f'(b)] \phi_i \rangle$$

$$= f(\alpha_i) - \sum_j |c_{ij}|^2 f(\beta_j) - \sum_j |c_{ij}|^2 (\alpha_i - \beta_j) f'(\beta_j)$$

$$= \sum_j |c_{ij}|^2 [f(\alpha_i) - f(\beta_j) - (\alpha_i - \beta_j) f'(\beta_j)]$$

$$> 0.$$
(A.22)

PROPOSITION A.9 (Peierls–Bogolubov inequality). Let f be convex on \mathbb{R} and a, h be hermitian matrices such that $\operatorname{Tr} e^{-h} = 1$. Then

$$f(\operatorname{Tr} a e^{-h}) \le \operatorname{Tr} f(a) e^{-h}$$
.

PROOF. Let (ϕ_i) and (η_i) be the eigenvectors and eigenvalues of h. Using Jensen's inequality twice,

$$f(\operatorname{Tr} a e^{-h}) = f\left(\sum_{i} \langle \phi_{i}, a\phi_{i} \rangle e^{-\eta_{i}}\right) \leq \sum_{i} f\left(\langle \phi_{i}, a\phi_{i} \rangle\right) e^{-\eta_{i}}$$

$$\leq \sum_{i} \langle \phi_{i}, f(a)\phi_{i} \rangle e^{-\eta_{i}} = \operatorname{Tr} f(a) e^{-h}.$$
(A.23)

PROPOSITION A.10 (Peierls inequality). Let a be a hermitian matrix and (ϕ_i) an orthonormal set of vectors. Then

$$\sum_{i} e^{\langle \phi_i, a\phi_i \rangle} \le \text{Tr } e^a.$$

PROOF. Let α_j be the eigenvalues of a with corresponding orthonormal eigenvectors ψ_j . Then

$$e^{\langle \phi_i, a\phi_i \rangle} = \exp \left\{ \sum_j \alpha_j |\langle \phi_i, \psi_j \rangle|^2 \right\} \le \sum_j |\langle \phi_i, \psi_j \rangle|^2 e^{\alpha_j}.$$
 (A.24)

We used Jensen's inequality and

$$\sum_{j} |\langle \phi_i, \psi_j \rangle|^2 = \operatorname{Tr} |\phi_i \rangle \langle \phi_i| = 1.$$
(A.25)

The claim follows by summing over i, using $\sum_i |\langle \phi_i, \psi_j \rangle|^2 = \text{Tr} |\psi_j \rangle \langle \psi_j| = 1$.

A.5. About convex functions

Here is a simple result about convex functions on \mathbb{R} . Recall that the right and left derivatives of a convex function f(s) at s=0 are given respectively by $\partial_+ f(0) = \inf_{s>0} \frac{f(s)-f(0)}{s}$ and $\partial_- f(0) = \sup_{s<0} \frac{f(s)-f(0)}{s}$.

PROPOSITION A.11. Let f_n be a sequence of continuously differentiable, convex functions on \mathbb{R} such that $f_n \to f$ pointwise. For each $m \in [\partial_- f(0), \partial_+ f(0)]$ there is a sequence $s_n \to 0$ such that $m = \lim_{n \to \infty} f'_n(s_n)$.

PROOF. We claim the following: for any $\varepsilon, \delta > 0$ there is $N = N(\varepsilon, \delta)$ such that for any n > N we have

$$f'_n(\delta) > \partial_+ f(0) - \varepsilon, \qquad f'_n(-\delta) < \partial_- f(0) + \varepsilon.$$
 (A.26)

The result then follows using the mean value theorem for the continuous function $f'_n(s)$: if it is the case that $m \in [\partial_- f(0) + \varepsilon, \partial_+ f(0) - \varepsilon]$ then there is some $s_n \in [-\delta, \delta]$ satisfying $f'_n(s_n) = m$, otherwise we may take $s_n = \delta$ or $s_n = -\delta$.

We prove the claim for $\partial_+ f(0)$. We have

$$f'_n(\delta) \ge \frac{f_n(\delta) - f_n(\delta/2)}{\delta/2}, \qquad \frac{f(\delta/2) - f(0)}{\delta/2} \ge \partial_+ f(0).$$
 (A.27)

Moreover,

$$\lim_{n \to \infty} \frac{f_n(\delta) - f_n(\delta/2)}{\delta/2} - \frac{f(\delta/2) - f(0)}{\delta/2} = \frac{f(\delta) - f(\delta/2)}{\delta/2} - \frac{f(\delta/2) - f(0)}{\delta/2} \ge 0.$$
(A.28)

So for n large enough we have

$$f'_n(\delta) \ge \frac{f_n(\delta) - f_n(\delta/2)}{\delta/2} \ge \frac{f(\delta/2) - f(0)}{\delta/2} - \varepsilon \ge \partial_+ f(0) - \varepsilon,$$
 (A.29)

as claimed. \Box