
CHAPTER 1

Spin systems

1.1. Spin matrices

The building blocks of quantum spin systems are the spin matrices. We
consider the algebra of n⇥n matrices with complex entries, and recall the notation
for the commutator

[A, B] = AB � BA. (1.1)

We will often use the convenient Dirac notation for the elements of a Hilbert
space H, the inner products, and projection operators. If (ei)i2I is a fixed or-
thonormal basis of H, we introduce the “ket” |ii and the “bra” hi|:

|ii ⌘ ei,

hi| ⌘ ei 2 H
⇤,

|iihi| ⌘ Pei
, the orthogonal projection on ei

hi|ji ⌘ hei, eji.

(1.2)

As we see above, the inner product is given by a bra and a ket, forming a
“bracket”. We also write |iihj| for the operator such that

⌦
ek,

�
|iihj|

�
e`

↵
= hk|ii hj|`i = �k,i�j,`. (1.3)

Finally, the notation also involve operators, writing

hi|A|ji ⌘ hei, A eji. (1.4)

Notice that A acts on the vector in the right by definition, even if the notation
suggests symmetry (it does not matter when A is hermitian).

Definition 1.1. Let n 2 {2, 3, 4, . . . }. Spin-matrices are n⇥n hermitian
matrices S(1), S(2), S(3) that satisfy the following:

[S(1), S(2)] = iS(3), [S(2), S(3)] = iS(1), [S(3), S(1)] = iS(2), (1.5)

(S(1))2 + (S(2))2 + (S(3))2 = n
2
�1

4
1l. (1.6)

It is common to introduce the parameter J = (n�1)/2 2
1

2
N (i.e. n = 2J +1);

then (1.6) reads
(S(1))2 + (S(2))2 + (S(3))2 = J(J + 1)1l. (1.7)

3
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The spin-matrices originate in the representation theory of the Lie algebra
sl2(C), but we will not need much of the general theory. See Hall [19, Section 4.6]
for more details about representation theory. Their relevance for quantum spins
comes from the fact that they are the “infinitesimal generators” for rotations
in three dimensions, and they describe the angular momentum of elementary
particles. See Gri�ths [18, Section 4.3] for the physics background.

The existence of such matrices follows by construction. Let |ai, a 2 {�J, �J+
1, . . . , J} denote an orthonormal basis of Cn. Let S(+), S(�) be defined by

S(+)
|ai =

p
J(J + 1) � a(a + 1) |a+1i, S(�)

|ai =
p

J(J + 1) � (a � 1)a |a�1i.
(1.8)

Note that S(+)
|Ji = S(�)

| � Ji = 0. Then define

S(1) = 1

2
(S(+) + S(�)), S(2) = 1

2i
(S(+)

� S(�)), S(3)
|ai = a|ai. (1.9)

Lemma 1.2. The matrices S(1), S(2), S(3) constructed above satisfy the re-
lations (1.5) and (1.6).

Proof. One can check the following commutation relations:

[S(3), S(+)] = S(+), [S(3), S(�)] = �S(�), [S(+), S(�)] = 2S(3). (1.10)

The relations (1.5) follow. Finally,

(S(1))2 + (S(2))2 + (S(3))2 = S(+)S(�) + [S(3)]2 � S(3) = J(J + 1)1l. (1.11)

⇤
For J = 1

2
(n = 2) we have

S(+) =

✓
0 1
0 0

◆
, S(�) =

✓
0 0
1 0

◆
, (1.12)

and the choice above gives the Pauli matrices (multiplied by 1

2
):

S(1) = 1

2

✓
0 1
1 0

◆
, S(2) = 1

2

✓
0 �i
i 0

◆
, S(3) = 1

2

✓
1 0
0 �1

◆
. (1.13)

For J = 1 (n = 3), we get

S(+) =

0

@
0

p
2 0

0 0
p

2
0 0 0

1

A , S(�) =

0

@
0 0 0

p
2 0 0

0
p

2 0

1

A , (1.14)

and thus

S(1) =
1

p
2

0

@
0 1 0
1 0 1
0 1 0

1

A , S(2) =
1

p
2

0

@
0 �i 0
i 0 �i
0 i 0

1

A , S(3) =

0

@
1 0 0
0 0 0
0 0 �1

1

A .

(1.15)
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Notice that, for J > 1, the matrix S(1) is not proportional to �|i�j|,1.
Spin matrices are not unique, but their spectrum is uniquely determined by

the commutation relations.

Lemma 1.3. Assume that S(1), S(2), S(3) are hermitian n ⇥ n matrices
that satisfy the relations (1.5) and (1.6). Then each S(i) has eigenval-
ues {�J, �J + 1, . . . , J}.

Proof. Since the numbering S(1), S(2), S(3) of the matrices is arbitrary, it is
enough to prove the claim for S(3). Define S(+) = S(1)+iS(2) and S(�) = S(1)

�iS(2).
One can check that

S(+)S(�) = J(J + 1)1l � [S(3)]2 + S(3),

S(�)S(+) = J(J + 1)1l � [S(3)]2 � S(3).
(1.16)

Let |ai be an eigenvector of S(3) with eigenvalue a. It follows from Eq. (1.16) that
��S(+)

|ai
��2

= ha|S(�)S(+)
|ai = J(J + 1) � a2

� a � 0,
��S(�)

|ai
��2

= ha|S(+)S(�)
|ai = J(J + 1) � a2 + a � 0.

(1.17)

Then |a|  J , and S(+)
|ai 6= 0 if a 6= J . Next, observe that [S(3), S(+)] = S(+).

Then
S(3)S(+)

|ai = (a + 1)S(+)
|ai. (1.18)

Then if a 6= J is an eigenvalue, a + 1 is also an eigenvalue. There are similar
relations with S(�), so that if a 6= �J is an eigenvalue, a� 1 is also an eigenvalue.
It follows that {�J, �J + 1, . . . J} is the set of eigenvalues. ⇤

Notice that the relations (1.8) always hold for spin-matrices; this follows from
(1.18) and (1.17). It follows from the parallelogram identity that kS±

k =
p

2J :

kS(+)
k

2 = 1

4
(2kS(+)

k
2 + 2kS(�)

k
2) = 1

4
(kS(+) + S(�)

k
2 + kS(+)

� S(�)
k

2)

= 1

4
(4kS(1)

k
2 + 4kS(2)

k
2) = 2J2.

(1.19)

1.2. Rotation of spins and symmetries

Spin operators are related to rotations in R3, and the matrices S(1), S(2), S(3)

in many ways behave like orthonormal vectors. Let ~S = (S(1), S(2), S(3)). Given
~a 2 R3, let

S~a = ~a · ~S = a1S
(1) + a2S

(2) + a3S
(3). (1.20)

By linearity, the commutation relations (1.5) generalize as

[S~a, S
~b] = iS~a⇥~b. (1.21)

Finally, let R~a
~b denote the vector ~b rotated around ~a by the angle k~ak. Rotations

of spins are represented by conjugating with appropriate unitary matrices:
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Lemma 1.4.
e�iS

~a

S
~b eiS

~a

= SR~a
~b.

Proof. We replace ~a by s~a, and we check that both sides of the identity
satisfy the same di↵erential equation. We find

d

ds
e�iS

s~a

S
~b eiS

s~a

= �i[S~a, e�iS
s~a

S
~b eiS

s~a

], (1.22)

and
d

ds
SRs~a

~b =
⇣ d

ds
Rs~a

~b
⌘

· ~S =
⇣
~a ⇥ Rs~a

~b
⌘

· ~S = �i[S~a, SRs~a
~b]. (1.23)

We used (1.21) for the last identity. ⇤
It follows from Lemmas 1.3 and 1.4 that any matrix S~a, ~a 2 R3 with k~ak = 1,

has eigenvalues {�J, �J + 1, . . . , J}.

Corollary 1.5. Let  ~b,c
be the eigenvector of S

~b with eigenvalue c. Then

e�iS
~a

 ~b,c
is the eigenvector of SR~a

~b with eigenvalue c.

Proof. Using Lemma 1.4,

SR~a
~b e�iS

~a

 ~b,c
= e�iS

~a

S
~b ~b,c

= c e�iS
~a

 ~b,c
. (1.24)

⇤
In contrast to rotations, reflections do not preserve the spin matrices since the

commutation relations are destroyed (consider the example S(1)
7! �S(1) with S(2)

and S(3) fixed).

1.3. Spin systems

We now consider systems with an arbitrary finite number of spins. We describe
two equivalent settings: 1. The one based on tensor products, which is popular
with physicists and algebraists. 2. The one based on classical spin configurations,
which is popular with probabilists.

1.3.1. Systems defined with tensor products.

Let H
(1) and H

(2) be two Hilbert spaces. The tensor product H
(1)

⌦H
(2) consists

of vectors v ⌦ w where v 2 H
(1) and w 2 H

(2), and of their linear combinations.
The scalar multiplication rule is that

�(v ⌦ w) = �v ⌦ w = v ⌦ �w, � 2 C. (1.25)

The inner product on H
(1)

⌦ H
(2) is constructed using the inner products on H

(1)

and H
(2). If v, v0

2 H
(1) and w, w0

2 H
(2), we set

hv ⌦ w, v0
⌦ w0

i
H(1)⌦H(2) = hv, v0

i
H(1) hw, w0

i
H(2) . (1.26)
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This definition extends by linearity to arbitrary vectors of H
(1)

⌦ H
(2). Finally, if

{ei} and {fj} are orthonormal bases of H
(1) and H

(2) respectively, then {ei ⌦ fj}

is an orthonormal basis of H
(1)

⌦ H
(2). This implies that the dimension of the

tensor product space satisfies

dim H
(1)

⌦ H
(2) = dim H

(1)
· dim H

(2). (1.27)

The tensor product should not be confused with the direct sum, where dimH
(1)

�

H
(2) = dim H

(1) + dim H
(2).

Tensor products of more than two spaces are defined similarly.
Given ⇤ b Zd, we consider the tensor space

H⇤ = ⌦x2⇤Cn. (1.28)

We extend the action of the spin operators to H⇤ by setting

S(i)
x

= S(i)
⌦ 1l⇤\{x}. (1.29)

This means that S(i)
x

acts as S(i) on the vector at x, and as the identity on the
other sites. To be more precise, let us denote the sites of ⇤ by x1, x2, . . . , x|⇤|.

Let v 2 H⇤ a vector of the form v = ⌦
|⇤|

j=1
vxj

; then

S(i)
xj

v = vx1 ⌦ · · · ⌦ vxj�1 ⌦ S(i)vxj
⌦ vxj+1 ⌦ · · · ⌦ vx|⇤| . (1.30)

The action of S(i)
x

extends by linearity to general vectors of the tensor product of
spaces.

A local observable is an operator on H⇤ for some ⇤ b Zd. We let B⇤

denote the space of local observables in ⇤. If A is such an observable, it has a
straightforward counterpart A0 in H⇤0 for ⇤ � ⇤ by writing

A0 = A ⌦ 1l⇤0\⇤. (1.31)

The support of a local observable A is the smallest set ⇤ b Zd such that A 2 B⇤

(more precisely, one can look at all ⇤0 such that A has a counterpart in B⇤0 , and
take the intersection of all domains ⇤0).

1.3.2. Systems defined with classical spin configurations. An alter-
native definition of H⇤ makes use the space of classical configurations. It is
equivalent to the previous construction, and it has the advantage of clarifying
that quantum systems are generalisations of classical spin systems (with finite
spin state). Namely, given n = 2, 3, . . . and J 2

1

2
N such that n = 2J + 1, let ⌦⇤

denote the set of classical spin configurations, namely

⌦⇤ = {�J, �J + 1, . . . , J}
⇤. (1.32)

We then define H⇤ to be the linear span of ⌦⇤, that is, v 2 H⇤ is a vector
v = (v!)!2⌦⇤ , with v! 2 C for each !. The inner product is

hv, w, i =
X

!2⌦⇤

v!w!. (1.33)
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A natural basis is formed by the vectors

|!i = (0, . . . , 0, 1|{z}
at !

, 0, . . . , 0). (1.34)

The dimension of H⇤ is equal to the number of basis vectors, i.e. n|⇤|.
The spin operators can be defined through their actions on spin configurations.

In the case n = 2, we set

S(1)
x

|!i = 1

2
|!(x)

i;

S(2)
x

|!i = i!x|!
(x)

i;

S(3)
x

|!i = !x|!
(x)

i.

(1.35)

Here, !(x) is equal to the configuration !, but with !x flipped. For general n, we
can define the operators S(±)

x
and S(3)

x
:

S(+)
x

|!i =

(p
(J(J + 1) � !x(!x + 1) |! + �xi if !x < J ;

0 if !x = J ;

S(�)
x

|!i =

(p
(J(J + 1) � (!x � 1)!x |! � �xi if !x > �J ;

0 if !x = �J ;

S(3)
x

|!i = !x|!
(x)

i.

(1.36)

Then we define S(1)
x

= 1

2
(S(+)

x
+ S(�)

x
) and S(2)

x
= 1

2i
(S(+)

x
� S(�)

x
).

1.4. Hamiltonians and their symmetries

The quantum spin systems of statistical mechanics, as their classical coun-
terparts, are defined on a finite domain ⇤ b Zd. We write E(⇤) for the set of
nearest-neighbour edges in ⇤. The Hilbert space is H⇤ defined in (1.28).

We consider the following family of hamiltonians, that depends on parameters
J (1), J (2), J (3), h 2 R.

XYZ hamiltonian:

H⇤,h = �

X

xy2E(⇤)

�
J (1)S(1)

x
S(1)

y
+ J (2)S(2)

x
S(2)

y
+ J (3)S(3)

x
S(3)

y

�
� h

X

x2⇤

S(3)
x

. (1.37)

The symmetries in the system are important, since the phase transitions are
often associated to symmetry breaking. Given a unitary matrix U in Cn, we
consider the following tensored matrix on H⇤:

U⇤ = ⌦x2⇤U. (1.38)

The hamiltonian is invariant under the symmetry U if [U⇤, H⇤,h] = 0, or equiva-
lently H⇤,h = U�1

⇤
H⇤,hU⇤.
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Let us discuss special cases of the model (1.37) and the corresponding sym-
metries.

• The case J (1) = J (2)
6= J (3) is the xxz-model. For h = 0 it is invariant

under rotations of the circle, i.e. the group SO(2) represented by the
unitaries U = ei↵S

(3)
with ↵ 2 [0, 2⇡]. It is also invariant under the ‘spin-

flip’ S(3)
7! �S(3) (represented by U = ei⇡S

(1)
x ), thus it has SO(2)⇥Z2-

symmetry.
• The case J (1) = J (2) = J (3) is the Heisenberg (or xxx-) model. For h = 0

it is invariant under rotations of the sphere, i.e. SO(3). Indeed, it is
invariant under U = eiS

(~a)
for any ~a 2 R3.

• The case J (1) = J (2) = 0 is the classical Ising model. For h = 0 it
is invariant under the discrete group Z2. The xxz-model also has this
symmetry.

• The case J (2) = J (3) = 0 is known as the quantum Ising model. It is
equivalent to a classical Ising model in d + 1 dimensions (one dimension
being continuous), which allows to prove many properties. It is invariant
under the discrete group Z2.

This family of interactions also has lattice symmetries (lattice translations
and rotations). Lattice translations can be broken in ‘antiferromagnetic’ models
with negative coupling constants.

1.5. Gibbs states and correlation functions

Given the hamiltonian H⇤,h, the corresponding finite-volume Gibbs states in
domain ⇤ b Zd at inverse temperature � is the state h·i⇤,�,h : B(H⇤) ! C defined
as

hAi⇤,�,h =
1

Z⇤,�,h

Tr A e��H⇤,h . (1.39)

The trace is in the Hilbert space H⇤ and the normalisation Z⇤,�,h is the partition
function, Z⇤,�,h = Tr e��H⇤,h . This definition is similar to the classical case,
with free boundary conditions. (Boundary conditions are notoriously tricky in
quantum systems.) Let M⇤ be the magnetisation operator in 3rd direction of
spins:

M⇤ =
X

x2⇤

S(3)
x

. (1.40)

The average magnetisation is given by

m⇤,�,h =
D 1

|⇤|
M⇤

E

⇤,�,h

. (1.41)

The spontaneous magnetisation is then given by

m⇤(�) = lim
h#0

lim
⇤*Zd

m⇤,�,h. (1.42)
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Notice that the existence of these limits is not mathematically obvious (one could
use lim inf instead). The order of limits is important, since we usually have by
symmetries that m⇤,�,h=0 = 0. We see below that m⇤(�) is zero when � is small
but that it is positive in some cases when � is large.

The two-point correlation functions between sites 0 and x are given by

hS(i)

0
S(i)

x
i⇤,�,h =

1

Z⇤,�,h

Tr (S(i)

0
S(i)

x
e��H⇤,h ). (1.43)

We also consider the states h·i
per

⇤`,�,h
with periodic boundary conditions, where

we use Hper

⇤`,h
instead of H⇤`,h

. Often the system has short range correlations in
the sense that

hS(i)

0
S(i)

x
i⇤,�,h ⇡ hS(i)

0
i⇤,�,h hS(i)

0
i⇤,�,h, (1.44)

as x is far from the origin. This happens e.g. at high temperatures, when � is
small. At low temperatures the system may exhibit long-range correlations, or
have the following property of long-range order.

Definition 1.6. The system exhibits long-range order if there exists a
sequence of domains ⇤n, where either ⇤n * Zd, or ⇤n = {1, . . . , mn}

d

per

with mn ! 1, such that

1

|⇤n|
2

X

x,y2⇤n

hS(3)
x

S(3)
y

i⇤n,�,0 � c > 0,

for all n.

1.6. Phase diagrams of ferromagnetic models

We review the phase diagrams of the XXZ hamiltonians with nonnegative
coupling constants and for dimensions d � 2. Parts of the phase diagrams are
proved, parts still lack a mathematically rigorous proof.

Figure 1.1. Phase diagram of the Ising model, and of the XXZ

model for J (3) > J (1) = J (2)
� 0, for all dimensions d � 2.
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Figure 1.2. Phase diagrams of the XXZ model for J (1) = J (2) >
|J (3)

|. The BKT phase is the Berezinsky-Kosterlitz-Thouless phase
where the two point correlation function has power-law decay (in
the unique phase, decay is exponential).

Figure 1.3. Phase diagrams of the Heisenberg or XXX model

for which J (1) = J (2) = J (3)
� 0.

1.7. Exercises

Exercise 1.1. Show the following properties, using the results of this chapter
or direct calculations.

(a) Let ~a = ⇡

2
(1, 0, 0); the unitary U = ei

⇡

2 S
(1)

then maps S(1) to itself, S(2)

to S(3), and S(3) to �S(2).
(b) Describe the cases ~a = ⇡

2
(0, 1, 0) and ~a = ⇡

2
(0, 0, 1).

(c) Let ~a = 2⇡

3
p

3
(1, 1, 1); the unitary U = eiS

(~a)
then maps S(1)

7! S(2)
7!

S(3)
7! S(1).
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(d) Check that

e�iaS
(3)

S(+) eiaS
(3)

= e�ia S(+),

e�iaS
(3)

S(�) eiaS
(3)

= eia S(�).

Exercise 1.2. Let H
(1) and H

(2) be two Hilbert spaces of dimensions n1 and
n2, respectively. Find an element of the tensor space H

(1)
⌦ H

(2) that cannot be
written v ⌦ w with v 2 H

(1), w 2 H
(2). Can you find such a vector for any choice

of n1, n2?

Exercise 1.3. Check that the map H
(1)

⌦ H
(2)

! C defined in Eq. (1.26)
satisfies all the properties of an inner product.

Exercise 1.4. Check that the spins operators defined in (1.35) and (1.36)
satisfy the relations of Definition 1.1.

Exercise 1.5. For ` 2 {1, 2, . . . }, let H` denote the space of homogeneous de-
gree ` polynomials p(x1, x2, x3) in 3 variables (with complex coe�cients) satisfying
�p = 0. Check that the di↵erential operators

L(1) := 1

i

�
x2

@

@x3
� x3

@

@x2

�
, L(2) := 1

i

�
x3

@

@x1
� x1

@

@x3

�
, L(3) := 1

i

�
x1

@

@x2
� x2

@

@x1

�

on H` are spin operators, i.e. satisfy Definition 1.1, with spin J = `. Also check
that (x1 + ix2)` is an eigenvector for L(3) with eigenvalue ` (i.e. a highest weight
vector) and for the case ` = 1 compute eigenvectors for the remaining eigenvalues.

Exercise 1.6. Calculate [H⇤,h, M⇤] where H⇤,h is the xyz-Hamiltonian de-
fined in (1.37) and M⇤ is the magnetisation operator defined in (1.40). When
does the commutator vanish?

Exercise 1.7. Consider the xxx-Heisenberg interaction on (Cn)⌦{x,y}:

~Sx · ~Sy = S(1)
x

S(1)
y

+ S(2)
x

S(2)
y

+ S(3)
x

S(3)
y

.

(a) In the case n = 2 (spin 1

2
) show that

~Sx · ~Sy = 1

2
T �

1

4
,

where T is the transposition operator defined by T |a, bi = |b, ai.
(b) Still in the case n = 2, show that ~Sx · ~Sy 

1

4
, i.e. that 1

4
1l � ~Sx · ~Sy is

non-negative definite.
(c) Now consider the case n = 3 (spin 1). Write the transposition operator T as

a polynomial in ~Sx · ~Sy.

Exercise 1.8. Fix a basis e1, . . . , en for Cn and consider the tensor product
Cn

⌦ Cn. Define a vector

 =
1

p
n

nX

j=1

ej ⌦ ej.
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(a) Let A be any orthogonal matrix, A�1 = A|. Show that (A⌦A) =  . Deduce
that (A ⌦ A) commutes with the projector Q = | ih |.

(b) Now let n = 2 and consider the following subspace of (C2)⌦2:

H1 = span{|+, �i � |�, +i}.

Find a unitary matrix U acting on (C2)⌦2 such that U⇤QU is the projection
onto the subspace H1.


