
APPENDIX B

Solutions to some exercises

B.1. Spin systems

Exercise 1.1 Unitaries act on operators by conjugation (S 7! U⇤SU), so we appeal
to Lemma 1.4.

(a) S(1), S(2), S(3) are the same as Se1 , Se2 , Se3 where the ei are the standard basis of
R3. Rotation around e1 by ⇡

2
= 90� indeed has the e↵ect described.

(b) Rotation around ~a = ⇡

2
(0, 1, 0) maps S(1)

7! �S(3), S(3)
7! S(1), S(2)

7! S(2).
Rotation around ~a = ⇡

2
(0, 0, 1) maps S(1)

7! S(2), S(2)
7! �S(1), S(3)

7! S(3).
(c) Since k~ak = 2⇡/3 this is indeed the case.

(d) U = eiaS
(3)

acts by rotation of the 1, 2-plane by angle a, so we can use the rotation
matrix: ✓

cos a � sin a
sin a cos a

◆
.

We have

e�iaS
(3)

S(+) eiaS
(3)

= e�iaS
(3)

(S(1) + iS(2)) eiaS
(3)

= (cos a � i sin a)S(1) + (sin a+ i cos a)S(2)

= (cos(�a) + i sin(�a))S(1) + i(cos(�a) + i sin(�a))S(2) = e�ia S(+).

The calculation for S(�) is similar.

Exercise 1.2 One can find such vectors provided n1, n2 � 2 (if one of them, say
H

(1), is one-dimensional then it is = C so H
(1)

⌦H
(2) = H

(2) and tensoring with a scalar
is just multiplication with that scalar). Assuming n1, n2 � 2, take a basis e1, e2, . . . for
H

(1) and a basis f1, f2, . . . for H
(2), and consider the vector

x = e1 ⌦ f2 + e2 ⌦ f1.

Assuming we could write x = v⌦w, expand v =
P

i�1
aiei and w =

P
i�1

bifi, then by
multi-linearity x =

P
i,j�1

aibjei ⌦ fj . The definition of x requires that a1b2 = a2b1 =
1 6= 0 (so a1, b1, a2, b2 6= 0) but also a1b1 = a2b2 = 0, which is a contradiction.

Exercise 1.3 Perhaps this is mainly an exercise in remembering the definition of
an inner product: we need hx, yi = hy, xi, h↵x+�y, zi = ↵hx, zi+�hy, zi, and hx, xi � 0
with = 0 if and only if x = 0. All these properties are inherited for the tensor product.
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94 B. SOLUTIONS TO SOME EXERCISES

Exercise 1.4 Since (1.35) is the special case J = 1

2
of (1.36), it su�ces to do the

latter. Expanding the commutator we get

[S(1), S(2)] = 1

2i
[S(�), S(+)].

We also get

(S(1))2 + (S(2))2 + (S(3))2 = 1

2
(S(+)S(�) + S(�)S(+)) + (S(3))2

so we should consider the products S(+)S(�) and S(�)S(+). We get:

S(�)S(+)
|!i =

⇢
0 if !x = J,�
J(J + 1) � !x(!x + 1)

�
|!i, if !x < J

S(+)S(�)
|!i =

⇢
0 if !x = �J,�
J(J + 1) � !x(!x � 1)

�
|!i, if !x > �J

Checking all the cases we get

[S(1), S(2)]|!i = 1

2i
[S(�), S(+)]|!i = 1

2i
(�2!x)|!i = iS(3)

|!i,

as required. One should similarly check the other commutation relations. As to the
Casimir operator, we have

(S(�)S(+) + S(+)S(�))|!i =

⇢
2J |!i if !x = ±J,
2
�
J(J + 1) � !2

x

�
|!i, otherwise

which in all cases gives
�
(S(1))2 + (S(2))2 + (S(3))2

�
|!i =

�
1

2
(S(+)S(�) + S(�)S(+)) + (S(3))2

�
|!i = J(J + 1)|!i,

as required.

Exercise 1.5 The basic fact we need for computation is that

xi
@

@xj
xk

@

@xl

=

(
xixk

@
2

@xjxl

if j 6= k,

xi

�
@

@xl

+ xj
@
2

@xjxl

�
if j = k.

With this one may check that

L(1)L(2) = (�1)
h
x2

�
@

@x1
+ x3

@
2

@x1x3

�
� x1x2

@
2

@x
2
3

� x2

3

@
2

@x1x2
+ x1x3

@
2

@x2x3

i

L(2)L(1) = (�1)
h
x1

�
@

@x2
+ x3

@
2

@x2x3

�
� x1x2

@
2

@x
2
3

� x2

3

@
2

@x1x2
+ x2x3

@
2

@x1x3

i

so the commutator

[L(1), L(2)] = (�1)
⇥
x2

@

@x1
� x1

@

@x2

⇤
= iL(3).

Similarly, the other commutation relations hold. We also need to check the Casimir
operator: somewhat lengthy calculations give

3X

i=1

(L(i))2 = (�1)
h
x2

1

�
@
2

@x
2
2
+ @

2

@x
2
3

�
+ x2

2

�
@
2

@x
2
1
+ @

2

@x
2
3

�
+ x2

3

�
@
2

@x
2
1
+ @

2

@x
2
2

�

� 2
�
x1x2

@
2

@x1x2
+ x1

@

@x1
+ x1x3

@
2

@x1x3
+ x3

@

@x3
+ x2x3

@
2

@x2x3
+ x2

@

@x2

�i
.
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Using that the Laplacian is 0 on H` we can write this as

x2

1

@
2

@x
2
1
+x2

2

@
2

@x
2
2
+x2

3

@
2

@x
2
3
+2

�
x1x2

@
2

@x1x2
+x1

@

@x1
+x1x3

@
2

@x1x3
+x3

@

@x3
+x2x3

@
2

@x2x3
+x2

@

@x2

�
,

which in turn we can recognize as

⇣
1 +

3X

i=1

xi
@

@xi

⌘⇣ 3X

i=1

xi
@

@xi

⌘
.

Since the operator
P

3

i=1
xi

@

@xi
acts as mutliplication by ` on degree ` monomials, the

last display is indeed `(`+ 1)1l on H`.
Checking that (x1 + ix2)` is a highest weight vector is straightforward, just apply

L(3). To construct the other eigenvectors for L(3), we can use the lowering operator:

L(�) = L(1)
� iL(2) = x1

@

@x3
� x3

@

@x1
� ix2

@

@x3
+ ix3

@

@x2
.

Then (L(�))k(x1 + ix2)` will give eigenvectors for all eigenvalues. (Since we checked
that the L’s are spin operators this is guaranteed to work, see Lemma 1.3.) For ` = 1
it is easy to compute that

L(�)(x1 + ix2) = �2x3, L(�)x3 = x1 � ix2

are such eigenvectors (not normalized, indeed we did not define a norm on H`).

Exercise 1.6 First expand M⇤:

[H⇤,h,M⇤] =
X

x2⇤

[H⇤,h, S
(3)
x ].

Since S(3)
x commutes with the external-field term, and with any term not involving the

site x, we get

[H⇤,h, S
(3)
x ] = �

X

y⇠x

[J (1)S(1)
x S(1)

y + J (2)S(2)
x S(2)

y + J (3)S(3)
x S(3)

y , S(3)
x ]

where the sum is over all sites y neighbouring x. Since S(3)
x commutes with itself and

using the commutation relations,

[H⇤,h, S
(3)
x ] = �

X

y⇠x

J (1)[S(1)
x , S(3)

x ]S(1)
y + J (2)[S(2)

x , S(2)
x ]S(2)

y

= �i
X

y⇠x

(J (2)S(1)
x S(2)

y � J (1)S(2)
x S(1)

y ).

Summing over x we get

[H⇤,h,M⇤] = i
X

xy2E(⇤)

(J (1)
� J (2))(S(1)

x S(2)
y + S(2)

x S(1)
y )

where the sum is over the edges. The commutator vanishes if and only if J (1) = J (2).

Exercise 1.7
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(a) To verify that ~Sx·~Sy = 1

2
T�

1

4
, check it on the product basis |±,⌥i. It is convenient

to work with 4~Sx · ~Sy = ~�x · ~�y. Expanding ~�x · ~�y + 1l = �(1)
⌦ �(1) + �(2)

⌦ �(2) +
�(3)

⌦ �(3) + 1l we can compute:

�
~�x · ~�y + 1l

�

8
>><

>>:

|+,+i

|+,�i

|�,+i

|�,�i

=

8
>><

>>:

|�,�i + i2|�,�i + |+,+i + |+,+i

|�,+i + i(�i)|�,+i � |+,�i + |+,�i

|+,�i + i(�i)|+,�i � |�,+i + |�,+i

|+,+i + (�i)2|�,�i + |�,�i + |�,�i

=

8
>><

>>:

2|+,+i

2|�,+i

2|+,�i

2|�,�i

Thus ~�x · ~�y + 1l = 2T as claimed.
Another way to see it is to start from S(+) and S(�): we have

�
S(+)

x S(�)
y + S(�)

x S(+)
y

�

8
>><

>>:

|+,+i

|+,�i

|�,+i

|�,�i

=

8
>><

>>:

0
|�,+i

|+,�i

0

so S(+)
x S(�)

y + S(�)
x S(+)

y is ‘almost’ the transposition-operator. At the same time

�
4S(3)

x S(3)
y + 1l

�

8
>><

>>:

|+,+i

|+,�i

|�,+i

|�,�i

=

8
>><

>>:

2|+,+i

0
0
2|�,�i

so 4S(3)
x S(3)

y +1l acts like a scalar perpendicular to S(+)
x S(�)

y + S(�)
x S(+)

y . Combining
these, we see that

2
�
S(+)

x S(�)
y + S(�)

x S(+)
y

�
+

�
4S(3)

x S(3)
y + 1l

�
= 2T,

which after expanding S(±) in S(1) and S(2) gives the claim.
(b) Use 1

4
� ~Sx · ~Sy = 1

2
(1l � T ). Since T 2 = 1l, the eigenvalues of T are ±1. Then

1

2
(1l � T ) is non-negative since its eigenvalues are 0 and 1.

(c) We have T = (~Sx · ~Sy)2 + ~Sx · ~Sy � 1l. This can be verified through brute force.

Exercise 1.8

(a) We compute

(A ⌦ A) =
nX

j=1

(Aej) ⌦ (Aej) =
nX

j=1

⇣ nX

k=1

Ak,jej

⌘
⌦

⇣ nX

`=1

A`,jej

⌘

=
nX

k,`=1

⇣ nX

j=1

Ak,jA`,j

⌘
ek ⌦ e` =

nX

k,`=1

⇣ nX

j=1

Ak,jA
|
j,`

⌘
ek ⌦ e`

=
nX

k,`=1

�k,`ek ⌦ e` =  .

Any vector ' can be decomposed as ' = a +  0 with a 2 C and h , 0
i = 0.

Then (using the shorthand A for A⌦A) we have h , A 0
i = hA⇤ , 0

i and A⇤ =
A�1 = A�1 =  since A�1 =  and  =  . Then AQ' = A(a ) = a while
QA' = Q(a ) +Q(A 0) = a also so Q and A commute.
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(b) Write  0 = 1
p

2

�
|+,�i � |�,+i

�
. Then  0 = (�(3)

⌦ 1l) . So U = �(3)
⌦ 1l = U⇤

works.

B.2. Fermionic systems

Exercise 2.14: In addition to the operator Uph
x,�, let us introduce Ũ

ph
x,� = cx,��c⇤

x,�.
We then have

(Ũph

x,�)
�1cx,�Ũ

ph

x,� = �c⇤

x,�, (Ũph

x,�)
�1c⇤

x,�Ũ
ph

x,� = �cx,�.

Let U⇤ =
Q

x2⇤A
(Uph

x,"
Uph

x,#
)
Q

x2⇤B
(Ũph

x,"
Ũph

x,#
). One can check that U�1

⇤
T⇤U⇤ = T⇤

and that U�1

⇤
nx,�U⇤ = 1 � nx,�. Then U�1

⇤
H (0)

⇤
U⇤ = H (0)

⇤
. The hamiltonian is then

invariant, so that
hnxi⇤,� = hU�1

⇤
nxU⇤i⇤,� = 2 � hnxi⇤,� .

Then hnxi⇤,� = 1.

B.3. Equilibrium states

Exercise 3.1 (a) We define B = A+A⇤ and C = i(A � A⇤). (b) We have

kABk = sup
v2H

kA(Bv)k

kBvk

kBvk

kvk
 sup

v2H

kA(Bv)k

kBvk
sup
v2H

kBvk

kvk
 kAkkBk.

Exercise 3.2

(a) Consider h(A + 1l)⇤(A + 1l)i and h(A + i1l)⇤(A + i1l)i. Both are non-negative, in
particular real, and expanding gives identities for the real and imaginary parts of
hAi and hA⇤

i.
(b) Let t, ✓ 2 R. Then, using the previous part,

0  h(A+ t ei✓ B)⇤(A+ t ei✓ B)i = hA⇤Ai + t
�
ei✓ hA⇤Bi + ei✓ hA⇤Bi

�
+ t2hB⇤Bi.

Choose ✓ so that ei✓ hA⇤Bi 2 R, then this gives

hA⇤Ai + 2t ei✓ hA⇤Bi + t2hB⇤Bi � 0, for all t 2 R.
Then the discriminant is  0, i.e.

0 � (2 ei✓ hA⇤Bi)2 � 4hA⇤AihB⇤Bi = 4|hA⇤Bi|
2
� 4hA⇤AihB⇤Bi

as claimed.
(c) We have

|hAi|
2 = |h1l⇤Ai|

2
 h1l⇤1lihA⇤Ai = hA⇤Ai.

Now assume kAk = 1. Note that 1l � A⇤A � 0, because for any v 2 H:

hv, (1l � A⇤A)vi = kvk2
� kAvk2

� kvk2
� kvk2 = 0.

Then
0  h1l � A⇤Ai = 1 � hA⇤Ai,

so for all A with kAk = 1 we have

|hAi|
2

 hA⇤Ai  1.
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I.e. kh·ik  1. For the opposite inequality, take A = 1l: then kh·ik � |h1li| = 1.

Exercise 3.3

(a)

Exercise 3.4

(a) We can write out X explicitly in terms of a1, a2, a3:

X =
1

2

✓
1 + a3 a1 � ia2

a1 + ia2 1 � a3

◆
.

Then we see that

det(X � �1l) = �2
� ��

1

4
(1 � k~ak2).

Thus the eigenvalues are

� =
1 ± k~ak

2
which means that X � 0 if and only if k~ak  1.

(b) It is clear from the explicit form of X that any Hermitian matrix can be written
in this form.

(c) A short computation shows that

XY = 1

4

�
(1 + ~a ·~b)1l + (~a+~b+ ~a ⇥~b) · ~�

�
.

Thus
TrXY = 1

2
(1 + ~a ·~b).

Note that x1 = 1+k~ak

2
, x2 = 1�k~ak

2
, y1 = 1+k~bk

2
, y2 = 1�k~bk

2
. Thus

x1y1 + x2y2 = 1

2
(1 + k~akk~bk), x1y2 + x2y1 = 1

2
(1 � k~akk~bk).

The claimed inequality is

1

2
(1 � k~akk~bk) 

1

2
(1 + ~a ·~b) 

1

2
(1 + k~akk~bk),

which holds since ~a ·~b = k~akk~bk cos ✓ and �1  cos ✓  1.

Exercise 3.5 We check the positivity by computing:

TrA⇤A e��H = Tr e�
1
2�H A⇤A e�

1
2�H = Tr (A e�

1
2�H )⇤A e�

1
2�H

� 0,

since the trace of a positive semidefinite operator is non-negative.

Exercise 3.6 Let H and A be fixed self-adjoint operators and consider the function
f : s 7! F (H + sA). It is concave and the derivative at s = 0 is equal to hAiH,� , which
shows that F�(H + A)  F�(A) + hAiH,� . Uniqueness follows from the fact that the
function is di↵erentiable.

Exercise 3.7 We first check that the minimiser of F�(·) is in the interior of the set
of density operators. Indeed, let ⇢ belong to its boundary. Then its kernel has positive
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dimension and there exists a density operator ⇢0 that lives in the kernel. Since ⇢ ? ⇢0

we can check that

F�

�
(1 � ")⇢+ "⇢0

�
= (1 � ")F�(⇢) + "F�(⇢

0) + 1

�
(1 � ") log(1 � ") + 1

�
" log ". (B.1)

It is clear that " = 0 is not a minimum, as the last term is negative and stronger than
linear.

We now know that any minimiser ⇢0 is in the interior of the set of density operators.
Further, for any operator ⌘ such that Tr ⌘ = 0, the stationary condition is

0 =
d

ds
F�(⇢0 + s⌘)

���
s=0

= Tr ⌘(H + 1

�
log ⇢0). (B.2)

It follows that H + 1

�
log ⇢0 is proportional to the identity, so that ⇢0 = const e��H is

the only stationary point (so it is the minimiser). The constant is 1/Tr e��H in order
for ⇢0 to be a density operator.

Although this is redundant, one can check that

d2

ds2
F�(⇢0 + s⌘)

���
s=0

= 1

2�
Tr ⌘⇢�1

0
⌘ � 0, (B.3)

which confirms that ⇢0 is a minimiser.

Exercise 3.8 If h·i = h·iH,� is the Gibbs state, for s 2 R define the inner product

A,B 7! (A,B)s = h↵�is(A
⇤)Bi = hA⇤↵is(B)i (B.4)

and introduce the function f(s) on [0,�] by

f(s) = (A,A) = h↵�is(A
⇤)Ai = hA⇤↵is(A)i. (B.5)

We then have

f 0(s) = �hA⇤[H,↵is(A)]i = �h↵�is(A
⇤)[H,A]i.

f 00(s) = h[↵�is(A
⇤), H] [H,A]i = h[↵

�
1
2 is

(A⇤), H] [H,↵ 1
2 is

(A)]i.
(B.6)

The last expression shows that f 00(s) � 0 so that f is convex. Using the Cauchy-Schwarz
inequality of the inner product on f 0(s) = �(A, [H,A]), we find that

f 0(s)2  (A,A) ([H,A], [H,A]) = f(s)f 00(s). (B.7)

It follows that log f is convex. Then (log f)0(0) 
1

�
(log f(�) � log f(0)). We get the

RAS inequality since f(0) = hA⇤Ai, f(�) = hAA⇤
i and f 0(0) = �hA⇤[H,A]i.

For the other direction, take A = 1 + tB, then

hA⇤[H,A]i = th[H,B]i + t2hB⇤[H,B]i

and

log
hA⇤Ai

hAA⇤i
= log

1 + thB +B⇤
i + t2hB⇤Bi

1 + thB +B⇤i + t2hBB⇤i
= O(t2).

So if h·i satisfies the RAS-inequality, since the right side is O(t2) it follows that the
density matrix ⇢ satisfies

h[H,B]i = TrB[⇢, H] = 0.
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This being true for all B, we must have

[⇢, H] = 0.

Since they commute, they have a common eigenbasis ei:

⇢|eii = ⇢i|eii, H|eii = hi|eii.

Now use the RAS-inequality again for the o↵-diagonal matrices A = |eiihej |, with i 6= j:

(hi � hj)⇢j �
1

�
⇢j log

⇢j

⇢i

.

(A consequence is that all ⇢i > 0.) Taking exponentials we get

e�hi ⇢i � e�hj ⇢j for all i 6= j.

Since I and j were arbitrary indices, it follows that

e�hi ⇢i = e�hj ⇢j for all i 6= j.

Then ⇢ = c e��H for some c, which is in turn fixed by the normalization.

Exercise 3.9 We use the function F�(A) = Tr ⇤AH�

⇤
+ 1

�
Tr ⇤A logA from the

Proposition. To use the result, we need to plug in a density matrix for Tr ⇤, which in
the notation of Theorem 3.13 can be ⇢⇤/ dimH⇤. We get

F�(⇢⇤/ dimH⇤) � F�( e
��H

�
⇤ /Tr ⇤ e��H

�
⇤ ).

Reorganizing this and using that

⇢(
1

|⇤|
H�

⇤ ) ! ⇢(A�)

due to translation-invariance, the result follows.

Exercise 3.10 Clearly tr is a state, and cyclicity is precisely the KMS condition
at � = 0. Now take ⇤ b Zd and assume that hABi = hBAi for all A,B 2 A⇤. Let ⇢⇤

be the density matrix for the restriction to A⇤. Taking A = |iihj| and B = |kih`| for
various combinations of i, j, k, ` shows that ⇢⇤(i, j) = 0 for i 6= j and ⇢⇤(i, i) = ⇢⇤(j, j)
for all i, j. Thus ⇢⇤ = 1l for all ⇤ b Zd which means that h·i = tr ·.

Exercise 3.11: It is clear that if the KMS condition holds for any observables
A,B, then it holds for A,A⇤. To prove the converse, consider A,B 2 Ã. We have

h(A⇤ +B)(A+B⇤)i = h(A+B⇤)↵i�(A
⇤ +B)i. (B.8)

Expanding and simplifying, we get

hA⇤B⇤
i + hBAi = hB⇤↵i�(A

⇤)i + hA↵i�(B)i. (B.9)

Repeating with A+ iB⇤ we get

hA⇤B⇤
i � hBAi = hB⇤↵i�(A

⇤)i � hA↵i�(B)i. (B.10)

Then hBAi = hA↵i�(B)i indeed.

Exercise 3.12 Let B 2 Ã and observe that the complex function h↵�
z (B)i is

entire and bounded in the strip 0  Im z  �. The function F1l,B(z) in the KMS
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condition (b) must be equal to h↵�
z (B)i. Further, the KMS condition states that

F1l,B(t + i�) = F1l,B(t), so this function is periodic in the imaginary direction. Then
F1l,B(z) is bounded in the whole complex plane, and is therefore constant by Liouville’s
theorem. Then h↵�

t (B)i = F1l,B(t) is constant.

Exercise 3.13 Following the hint, let A be local, say A 2 A⇤, and use the positive
semi-definite square root of Bn i.e. Bn =

p
Bn

p
Bn with

p
Bn � 0. We have [H�, A] =

[H�

⇤
, A] so for n large enough Bn commutes with all terms in the commutator, and

then from the RAS condition for h·i:

hA⇤[H�

⇤ , A]Bni = h(A
p
Bn)

⇤[H�

⇤ , A
p
Bn]i

�
1

�
h(A

p
Bn)

⇤A
p
Bni log

h(A
p
Bn)⇤A

p
Bni

hA
p
Bn(A

p
Bn)⇤i

=
1

�
hA⇤ABni log

hA⇤ABni

hAA⇤Bni

which gives the RAS-inequality for h·i
0.

Exercise 3.14 Here you can use whichever characterization of Gibbs states you
prefer – but since the question does not assume translation-invariance, a complete
solution would check the KMS or RAS conditions. Checking the RAS-condition is
quite convenient: thanks to the invariance of �, RAS for h·i

0 is the inequality

h(U⇤AU)⇤[H�

⇤ , (U
⇤AU)]i �

1

�
h(U⇤AU)⇤(U⇤AU)i log

h(U⇤AU)⇤(U⇤AU)i

h(U⇤AU)(U⇤AU)⇤i

which indeed holds since h·i satisfies RAS. (For translation-invariant states, the varia-
tional characterization is also easy to check.)

B.4. Uniqueness and non-uniqueness of Gibbs states

Exercise 4.1: We have

kAk
2

2 = tr {x}[⇤A
⇤A =

X

i,j

tr {x}[⇤eiej ⌦ C⇤

i Cj =
X

j

tr {x}[⇤e
2

j ⌦ C⇤

j Cj

=
2

N

X

j

tr ⇤C
⇤

j Cj =
2

N

X

j

kCjk
2

2.

We now use Schwarz inequality to get

⇣N
2
�1X

j=0

kCjk2

⌘
2

 N2
X

j

kCjk
2

2 =
N3

2
kAk

2

2.

We take the square root and get the result.
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B.5. Mean-field systems

Exercise 5.1: We have
H⇢ = �~a · ~S �

1

4
1l. (B.11)

Then
⇢H⇢ = �

1

8
1l � 3

4
~a · ~S � (~a · ~S)2, Tr ⇢H⇢ = �

1

4
�

k~ak
2

2
.

Further, we saw in a previous exercse that ⇢ has eigenvalues 1+k~ak

2
, 1�k~ak

2
, so

Tr ⇢ log ⇢ = 1+k~ak

2
log 1+k~ak

2
+ 1�k~ak

2
log 1�k~ak

2
.

Thus
f(⇢) = �

1

4
�

1

2
k~ak2 + 1

�

�
1+k~ak

2
log 1+k~ak

2
+ 1�k~ak

2
log 1�k~ak

2

�
.

With the parameterization t = 1�k~ak

2
this becomes

f(⇢) = 2t(1 � t) �
3

4
+ 1

�

�
t log t+ (1 � t) log(1 � t)

�
.

Note that, with x = k~ak we have

f 0(t) = 2 � 4t+ 1

�
log t

1�t
= 2x+ 1

�
log 1�x

1+x
.

Thus

f 0(t) = 0 , e2�x =
1 + x

1 � x
, x = tanh(�x).

Then for � > 1, we see that f(⇢) is minimized for any ~a such that x = k~ak is a positive
solution. In particular, the minimizers have SO(3)-symmetry.

Exercise 5.2: Consider the case when b3 � b2 � b1 � 0 and

�{x,y} = �(b1S
(1)
x S(1)

y + b2S
(2)
x S(2)

y + b3S
(3)
x S(3)

y ).

We again parameterize ⇢ as ⇢ = 1

2
1l + ~a · ~S, and arguing as for (B.11) we obtain

H⇢ = �

3X

j=1

ajbjS
(j) = � ~ab · ~S, (B.12)

where we set ~ab = (a1b1, a2b2, a3b3). The mean-field equation is then

⇢ = 1

2
1l + ~a · ~S =

e2� ~ab·~S

Tr e2� ~ab·~S
. (B.13)

Now we recall that the mean-field equation is necessary but not su�cient. Among the
solutions ~a, we should select those such that ⇢ minimizes f(⇢). Using (B.13) we get
that

f(⇢) = �
1

�
log Tr e2� ~ab·~S = �

1

�
log cosh(�k ~abk). (B.14)

Since cosh(·) is increasing, setting x = k~ak we see that ~a = x e3 gives the best solution,
as well as any rotation of x e3 such that ~ab has the same length.

In particular, in the XXZ-case � = b3 > b2 = b1 = 1, we should take ~a = ±x e3.
Then

f(⇢) = �
1

�
log cosh(1

2
��x).


