APPENDIX B

Solutions to some exercises

B.1. Spin systems

EXERCISE 1.1 Unitaries act on operators by conjugation (S — U*SU), so we appeal
to Lemma 1.4.

(a) SM S@ SG are the same as S, 52, S where the e; are the standard basis of
R3. Rotation around e; by 5 = 90° indeed has the effect described.

(b) Rotation around @ = 7(0,1,0) maps SV — —S® §& — SO Sy GG,
Rotation around @ = §(0,0, 1) maps S® — S®, §® 1 — GO &y &),

(c) Since ||@|| = 27/3 this is indeed the case.

(d) U= elaS? acts by rotation of the 1, 2-plane by angle a, so we can use the rotation

matrix:
cosa —sina
sina cosa /)’

We have
e—iaS(B) S(Jr) eiaS<3> —_ e—iaS(B) (S(l) + 15(2)) eiaS(3>
= (cosa — isina)S™ + (sina +icosa)S™
= (cos(—a) +isin(—a))S™ +i(cos(—a) + isin(—a))S? = e~ §),

The calculation for S is similar.

EXERCISE 1.2 One can find such vectors provided ni,ny > 2 (if one of them, say
HW | is one-dimensional then it is = C so HY @ H® = H® and tensoring with a scalar
is just multiplication with that scalar). Assuming nq,ne > 2, take a basis e, e, ... for
H® and a basis fi,f, ... for H®, and consider the vector

r=e1Q@f +tey 1.

Assuming we could write z = v ® w, expand v = )., a;e; and w = Y.~ b;f;, then by
multi-linearity =), i>1 a;bje; ® f;. The definition of x requires that a1by = azb; =
1#0 (so ay,b1,a2,ba # 0) but also ajby = agbe = 0, which is a contradiction.

EXERCISE 1.3 Perhaps this is mainly an exercise in remembering the definition of
an inner product: we need (z,y) = (y,x), (ax+ Py, z) = a(x, z)+ Ly, z), and (z,z) >0
with = 0 if and only if x = 0. All these properties are inherited for the tensor product.
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94 B. SOLUTIONS TO SOME EXERCISES

EXERCISE 1.4 Since (1.35) is the special case J = % of (1.36), it suffices to do the
latter. Expanding the commutator we get

[5(1)75(2)] —_ %[S(‘), S(+)].
We also get
(5(1))2 + (5(2))2 4+ (5(3))2 — %(S“)S(‘) + S(—>S(+)) + (5(3))2
so we should consider the products S S and S S, We get:

0 if wy, = J.

(=) Q)] — v !

Ss ’w>—{ (J(J+1)_w$(wx+1))‘w>, ifw, <J
0 ifw, =—J
) Q)] — . '
SH S !w)—{ (J(T+1) —wp(we — 1)) |w), ifw, >—J

Checking all the cases we get

(9, 8P|w) = z[ST, 5P ]|w) = g (—2ws)|w) = 15 |w),
as required. One should similarly check the other commutation relations. As to the
Casimir operator, we have

2J|w) if wy, = +J,

() g 1 g G| —
(S8 + ST ST |w) —{ 2(J(J +1) —w?)|w), otherwise

which in all cases gives
(D) + (82 + (S9)?) |w) = (3(SHPS + SISO + (SP))|w) = J(J + 1) |w),

as required.

EXERCISE 1.5 The basic fact we need for computation is that

) 52 ap -
maxka_{xﬂmwm itj#k,

192, Tk Pz, = ) 82 e
j x,(axl —i—x]—axm) if j =k.

With this one may check that

o) 92 52 2 92 9?2
LOL@ — (—1) [:pz(a—xl + :Ug—axm) - $1$2@ — T35p0, T 1‘@376362963}

@70 _ (_ 0 9y _ o 2 92
LPLY = ( 1) {xl(amg + T3 Bzgmg) L1T2 a$§ 3 0172 + 23 ox1x3

l ! 2 ] 8 8 : 3

Similarly, the other commutation relations hold. We also need to check the Casimir
operator: somewhat lengthy calculations give

3
SOV = (1) |0} (Zy + ) + 33 (& + o) + 23 (e + )
=1
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Using that the Laplacian is 0 on H, we can write this as

2 92

2 92 2 92 9?2 o) 9?2 o) 9?2 o)
Y1522 T%25.3 +x337§+2(951x2ax1x2 1 g 018355 o+ T g 0T gy T2g0),

which in turn we can recognize as

3 3
E 0 § o)
i=1 1=1

Since the operator Z?:l xia%i acts as mutliplication by ¢ on degree ¢ monomials, the
last display is indeed £(¢ + 1)1 on H,.

Checking that (z1 + iz9)¢ is a highest weight vector is straightforward, just apply
L®. To construct the other eigenvectors for L®, we can use the lowering operator:

LO =LY —iL® =210 — 2yl —img il +izszl.
Then (LO)F (21 + ixg)? will give eigenvectors for all eigenvalues. (Since we checked

that the L’s are spin operators this is guaranteed to work, see Lemma 1.3.) For ¢ =1
it is easy to compute that

L(_)(.Cljl + i.l‘g) = —2x3, L(_>:B3 =x1 —ire

are such eigenvectors (not normalized, indeed we did not define a norm on Hy).

EXERCISE 1.6 First expand Mjy:
[Hpn, Ma] =) [Hap, S5
TEA

Since S commutes with the external-field term, and with any term not involving the
site x, we get
[Hp, S = — Z[J(I)SJ(I?l)S?(Jl) + J(Q)SS)S?(JQ) + J(B)SS)S?(P7 S®)

y~z

where the sum is over all sites y neighbouring x. Since S commutes with itself and
using the commutation relations,

[HA,ha S;(rg)] - _ Z J(l)[S:EcUa SS)]S;;) + J@ [59([12)7 59(62)]5?52)
Yy~
=—iy (JOSPSD — JOFDGD),
y~x

Summing over x we get

[Hpp, Mp] =i Z (JW = ) (SIS + SSH)
zye€(A)

where the sum is over the edges. The commutator vanishes if and only if J® = J®.

EXERCISE 1.7
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(a) To verify that S-S, = 3T — 1, check it on the product basis |+, F). It is convenient
to work with 45, - §y = Gy - 0y. Expanding ¢, -6y +1=0Y ®@c® + 0@ @0® +
oc® ® o® + 1 we can compute:

[+, +) =, =)+ 2=, =) + [+, +) + [+, +) 2|+, +)

(5 .G —|—]l) |+7_> — ’_7+> ( 1)‘ ’ > H_ >+|+ > — 2’—,‘1‘)
S = +) [+ =) +i=)+ =) = =) + =) 24, -)
_7_> H_ +>+( )2’ 7_>+‘_7_>+ _7_> 2—,—>

Thus &, - ¢y + 1 = 2T as claimed.
Another way to see it is to start from S™ and S): we have

[+ +) 0
(H Q=) 1 g(-) g =) _ ) |-+
(Sx Sy * S:n Sy ) ‘_7+> H_v _>
—-) 0
so 5578y 4+ 8578y is ‘almost’ the transposition-operator. At the same time
[+, +) 2[+,+)
(3) Q(3) H’a _> _ 0
(4595 +1) 0 =40

=) 2/—,-)
SO 453(33)5’2(,3) + 1 acts like a scalar perpendicular to Sg(f)SZE,_) + Sé_)S?(f). Combining
these, we see that
2(SEVSC) + SEISH) + (4SPSH 4 1) = 2T,
which after expanding S® in S™ and S® gives the claim.
(b) Use + — S, - S, = L(1—1T). Since T2 = 1, the eigenvalues of T are +1. Then
%(]1 — T) is non-negative since its eigenvalues are 0 and 1.
(¢) We have T' = (S, - S_"y)Q + 3, - §y — 1. This can be verified through brute force.

EXERCISE 1.8
(a) We compute

n

(Aej) ® (Aey) = Z (ZAkJeJ) ® (i:A&jej)
=1

j=1

(iAk’jAe’Oek ®ee= i (ZAkajA},e)ek ® ey

=1 j=1 k=1 j=1

(A® A =

M-

<
Il
—

Il
|F1§

= Z Ok cer @ er = 1.
k,l=1

Any vector ¢ can be decomposed as ¢ = ap + ¢ with a € C and (¢, ¢’) = 0.
Then (using the shorthand A for A® A) we have (¢, AY') = (A*, ') and A* =
A~1yp = A~1¢p = o) since A~ =+ and ¢ = 1. Then AQp = A(ay)) = ayp while
QAp = Q(ay)) + Q(AY') = ap also so @ and A commute.
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(b) Write ¥/ = 5 (|+, =) — [~ +)). Then ¢/ = (6@ @ )y. So U =0 @1 =U"

works.

B.2. Fermionic systems

EXERCISE 2.14: In addition to the operator UE}}, let us introduce [NJ}?}} = Cr0—Ch o
We then have

(UP8) eooUbe = ~Cror  (URS) '3, URG = —Cag
h 7 rph ~ph 77ph _
Let Uy = HIEAA(UETUgi) HIEAB(U:S,TUE,i)' One can check that Uy 'Th\Uy = Ty

and that UXInI,UUA =1-n4,. Then UngI(XO)UA = HX)). The hamiltonian is then
invariant, so that

(na)as = (Uy 'meUn)ag =2 — (na)ap-
Then (ny)ag = 1.

B.3. Equilibrium states

EXERCISE 3.1 (a) We define B = A+ A* and C =i(A — A*). (b) We have

1AB| = sup LABOIIBulL - IAB] LB
veit 1Boll ol ~wen [1Boll ven o]

< 1Al B]-

EXERCISE 3.2
(a) Consider ((A + 1)*(A + 1)) and ((A + il)*(A + il)). Both are non-negative, in
particular real, and expanding gives identities for the real and imaginary parts of
(A) and (A*).
(b) Let t,6 € R. Then, using the previous part,
0<((A+te?B)*(A+te? B)) = (A*A) +t(e? (A*B) + & (A*B)) + t*(B*B).
Choose 6 so that e (A*B) € R, then this gives
(A*A) + 2t (A*B) +t*(B*B) >0,  forall t € R.
Then the discriminant is < 0, i.e.
0> (26" (4*B))? — 4(A*A)(B*B) = 4/(A*B)|? — 4(A*A)(B*B)
as claimed.
(c) We have
[(A)? = [(T"A)]* < (I 1)(A"A) = (4" A).
Now assume ||A|| = 1. Note that 1 — A*A > 0, because for any v € H:
(v, (1= A" AY) = [[ol]? = [[Av]|? = Jo]]? - [Jo]f? = 0.
Then
0<(I1—A*A)=1-—(A"A),
so for all A with ||A|| =1 we have
(4)]? < (A"4) < 1.
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Le. ||{-)]| < 1. For the opposite inequality, take A = 1: then ||(-)| > |[(1)| = 1.

EXERCISE 3.3

(a)

EXERCISE 3.4

(a) We can write out X explicitly in terms of a1, ag, as:
X — 1 1+as3 a1 —ias
2 \ay +iaz 1—a3z )’

det(X — A1) =A% — X — (1 —||@|?).

Thus the eigenvalues are

Then we see that

1+ ||d]
2
which means that X > 0 if and only if ||a]| < 1.

(b) Tt is clear from the explicit form of X that any Hermitian matrix can be written
in this form.

(¢) A short computation shows that

XY =Y +a o)+ (@+b+axb)-q).

=

Thus
1 L ow
Tr XY =35(1+a-b)
Note that 1 = 1+$\d||’ Ty = 1_2“6”, Y1 = 1+2”bH, Yo = 1_2”bH. Thus

o1y + zoy2 = 5(L+ @llllbl),  z1y2 + zoyn = (1 — [|a@][[b]]).
The claimed inequality is
s —lalfol) < 3(1+a-v) < 51+ |lalllol),

which holds since @- b = ||@||[|b]| cos@ and —1 < cos 6 < 1.

EXERCISE 3.5 We check the positivity by computing:
TrA*AePH = Tr e 281 g* e 2P0 =Ty (Ae_%’gH )*Ae_%BH >0,
since the trace of a positive semidefinite operator is non-negative.
EXERCISE 3.6 Let H and A be fixed self-adjoint operators and consider the function
f:s— F(H+ sA). It is concave and the derivative at s = 0 is equal to (A4) g g, which

shows that Fg(H + A) < Fg(A) + (A)r 3. Uniqueness follows from the fact that the
function is differentiable.

EXERCISE 3.7 We first check that the minimiser of F3(-) is in the interior of the set
of density operators. Indeed, let p belong to its boundary. Then its kernel has positive



B.3. EQUILIBRIUM STATES 99

dimension and there exists a density operator p’ that lives in the kernel. Since p L p/
we can check that

Fa((l—e)p+ep) =1 —e)Fs(p) +eFs(p) + %(1 —e)log(l—¢) + %slogs. (B.1)

It is clear that € = 0 is not a minimum, as the last term is negative and stronger than
linear.

We now know that any minimiser pg is in the interior of the set of density operators.
Further, for any operator n such that Trn = 0, the stationary condition is

d 1
0= -Fslpo+sn)| =Trn(H + 5logpo). (B.2)

It follows that H + %log po is proportional to the identity, so that py = const e 5

is
the only stationary point (so it is the minimiser). The constant is 1/Tr e ™?# in order
for py to be a density operator.
Although this is redundant, one can check that
2

Ta7Blpo+sm)| = g5Trmpg n >0, (B3)

which confirms that pg is a minimiser.

EXERCISE 3.8 If (-) = (-) s is the Gibbs state, for s € R define the inner product

A,B— (A,B)s = (a_is(A*)B) = (A" ais(B)) (B4)
and introduce the function f(s) on [0, 5] by
f(s)=(AA) = (a_is(A")A) = (A% a5 (A)). (B.5)

We then have
f'(s) = —(A"[H, ais(A)]) = —{ais(A")[H, A]).

1"(5) = (la—ss(A"), H] [H, A]) = ([o_1,,(A%), H] [H, 01, (A)). o)

The last expression shows that f”(s) > 0 so that f is convex. Using the Cauchy-Schwarz
inequality of the inner product on f’(s) = —(A, [H, A]), we find that

F1(s)2 < (A, A) ([H, AL [H, A]) = f(s)["(s)- (B.7)
It follows that log f is convex. Then (log f)'(0) < %(log f(B) —log f(0)). We get the
RAS inequality since f(0) = (A*A), f(8) = (AA*) and f/'(0) = —(A*[H, A]).

For the other direction, take A = 1 + ¢B, then
(A*[H, A]) = t([H, B]) + t*(B*[H, B])

and ,

(A*A) 1+¢(B+ B*) +t*(B*B) 9

8 aan ~ 8Tyt By +epey - O

So if (-) satisfies the RAS-inequality, since the right side is O(¢?) it follows that the
density matrix p satisfies

([H,B]) = Tt Blp, H] = 0.
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This being true for all B, we must have
[p, H] = 0.
Since they commute, they have a common eigenbasis e;:
plei) = pilei),  Hlei) = hile;).
Now use the RAS-inequality again for the off-diagonal matrices A = |e;)(e;|, with i # j:
1 Pi
hi — hi)p; > 7p,10g7j_
( 7 J) J 6 J i
(A consequence is that all p; > 0.) Taking exponentials we get
eBhi pi > Pl Pj for all i # j.
Since I and j were arbitrary indices, it follows that
Pl p; = P Pj for all ¢ # j.
Then p = ce P for some ¢, which is in turn fixed by the normalization.
EXERCISE 3.9 We use the function Fg(A) = TraAHY + %Tr AAlog A from the

Proposition. To use the result, we need to plug in a density matrix for Tr p, which in
the notation of Theorem 3.13 can be pp/dim H,. We get

fg(pA/dim/HA) > fg(e_ﬁHg) JTr A e_ﬂH;{) ).
Reorganizing this and using that
1
P(WHE) — p(As)

due to translation-invariance, the result follows.

EXERCISE 3.10 Clearly tr is a state, and cyclicity is precisely the KMS condition
at 8 =0. Now take A € Z? and assume that (AB) = (BA) for all A, B € Aj. Let py
be the density matrix for the restriction to Ax. Taking A = |i)(j| and B = |k)(¢| for
various combinations of i, j, k, £ shows that pa(i,j) = 0 for i # j and pa(4,7) = pa(J,7)
for all 4, j. Thus py = 1 for all A € Z¢ which means that (-) = tr-.

EXERCISE 3.11: It is clear that if the KMS condition holds for any observables
A, B, then it holds for A, A*. To prove the converse, consider A, B € A. We have

((A*+ B)(A+ B")) = ((A+ B*)aug(A* + B)). (B.8)
Expanding and simplifying, we get
(A*B*) + (BA) = (B*aig(A")) + (Aaig(B)). (B.9)
Repeating with A + iB* we get
(A*B*) — (BA) = (B ass(A")) — (Aass(B)). ®.10)

Then (BA) = (Aaig(B)) indeed.

EXERCISE 3.12 Let B € A and observe that the complex function (a®(B)) is

z

entire and bounded in the strip 0 < Imz < . The function Fy p(z) in the KMS
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condition (b) must be equal to (a®(B)). Further, the KMS condition states that
Fyp(t+18) = Fu,p(t), so this function is periodic in the imaginary direction. Then
Fy p(z) is bounded in the whole complex plane, and is therefore constant by Liouville’s

theorem. Then (af (B)) = Fy p(t) is constant.

EXERCISE 3.13 Following the hint, let A be local, say A € Ay, and use the positive
semi-definite square root of B, i.e. B, = /Bn,\/B, with v/B,, > 0. We have [H®, A] =
[HY, A] so for n large enough B, commutes with all terms in the commutator, and
then from the RAS condition for (-):

. (AVBa)*AVBy)
2 AV AV log
(A*AB,)

(AA*B,)

(A*ABy,) log

!/

which gives the RAS-inequality for (-)’.

EXERCISE 3.14 Here you can use whichever characterization of Gibbs states you
prefer — but since the question does not assume translation-invariance, a complete
solution would check the KMS or RAS conditions. Checking the RAS-condition is
quite convenient: thanks to the invariance of ®, RAS for (-)’ is the inequality

(U"AU)" (U AU))
(U*AU)(U*AU)*)

1
B

which indeed holds since (-) satisfies RAS. (For translation-invariant states, the varia-
tional characterization is also easy to check.)

(U*AU)[HR, (U*AU)]) = = ((U*AU)*(U*AU)) log

B.4. Uniqueness and non-uniqueness of Gibbs states

EXERCISE 4.1: We have

”AH% =tr {x}uAA*A = Ztr {z}UACIEf & C;C; = Ztr {I}UAGJZ ® C;Cj

7,7 J
2 i} 2
= 3 2 traCiC = 55 Y IIG B.
J J

We now use Schwarz inequality to get

N2-1

3
(3 lesle)” < v Y l0s 13 = 243,
=0 i

We take the square root and get the result.
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B.5. Mean-field systems

EXERCISE 5.1: We have

H,=-a-§-11 (B.11)
Then ) . »
pH,=—11-3G.§—(a-5)?,  TrpH,= -1 ldC
Further, we saw in a previous exercse that p has eigenvalues 1+£\(i||’ 1—£|a‘||7 SO
Tr plog p = 1+2||a|| log 1+2||a|| + 1—2\\a‘|| log 1—£\a‘||'
Thus

~12 1+||a@ 1+||a@ 1-||@ 1-||@
flp)=—-%—14a|* + %( 2Hall log %Ia\l + 2IIaII log 2||a||).
With the parameterization ¢t = @ this becomes

flp) =2t(1 —t) — 3 + §(tlogt + (1 —t) log(1 — 1)).

Note that, with = ||@|| we have

f’(t):2—4t+%logﬁ:2x+ﬁlogi—£.
Thus
1
flt)=0 < eQ’B‘c:1+x < x = tanh(fz).
—x

Then for 8 > 1, we see that f(p) is minimized for any @ such that = = ||@|| is a positive
solution. In particular, the minimizers have SO(3)-symmetry.

EXERCISE 5.2: Consider the case when b3 > by > b; > 0 and
Proy = —(blSCE,”S;) + szg(f)S;2> + ngf)Sl(f)).

We again parameterize p as p = %]1 +ad-S , and arguing as for (B.11) we obtain
3
H,=— Zajbj5<j> = —ab- S, (B.12)
j=1
where we set ab = (a1b1, agby, agbs). The mean-field equation is then

eQﬁab-S

Tr e28ab-S
Now we recall that the mean-field equation is necessary but not sufficient. Among the

solutions @, we should select those such that p minimizes f(p). Using (B.13) we get
that

flp) = —% log Tr e2Bab-S —% log cosh(S3||abl|). (B.14)
Since cosh(+) is increasing, setting x = ||@|| we see that @ = z e3 gives the best solution,
as well as any rotation of z e3 such that ab has the same length.

In particular, in the XXZ-case A = b3 > by = by = 1, we should take @ = +zes.
Then

f(p) = —% log cosh(2 ABz).



