
CHAPTER 5

Mean-field systems

Mean-field systems are models where the geometry of Zd is drastically simpli-
fied in order to increase the amount of symmetry: instead of just translations, we
allow all permutations. This allows for more explicit calculations, in particular
we can fully describe the set of Gibbs states in many examples. Such calculations
are valuable as a guide, since it is expected that features of mean-field systems
hold also in Zd for large enough d (in some cases d � 3 may su�ce).

5.1. Permutation-invariant states

We consider Gibbs states which are invariant under all (finite) permutations.
Since the geometric structure of the lattice Zd is not relevant, we instead take
N+ = {1, 2, 3, . . . } as our indexing set.

Recall that Hn denotes Cn with associated spin matrics (i.e. an irreducible
representation of su(2)). We use the following notation:

AN = A{1,2,...,N} = B(H⌦{1,2,...,N}

n
), Aloc =

[

N�1

AN , A = Aloc. (5.1)

Permutaions ⌧ 2 SN , the symmetric group, act on Aloc and A in the natural way:

⌧ |'1, '2, · · · 'Ni = |'⌧(1), '⌧(2), · · · '⌧(N)i, |'1, '2, · · · 'Ni 2 H
⌦{1,2,...,N}

n
,

(⌧A)|'i = ⌧A⌧�1
|'i, A 2 Aloc.

(5.2)

Definition 5.1. A state ⇢ on A is called permutation-invariant or ex-
changeable if for all N � 1, all A 2 AN and all ⌧ 2 SN , we have that
⇢(⌧A) = ⇢(A). We write Ep.i. for the set of such states.

Permutation-invariant states arise from mean-field models in statistical physics.
We consider models defined by Hamiltonians of the form

HN =
KX

k=1

X

L✓{1,...,N}

|L|=k

N�
N

k

��L, (5.3)

where the (finite-range) interaction � = (�L)L✓N+,|L|K is assumed to be permutation-
invariant in the sense that ⌧�L = �⌧L for all L b N+ and permutations ⌧ . Here
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72 5. MEAN-FIELD SYSTEMS

�L represents the interaction between the spins in the set L, and our assumptions
mean that any set of k spins interact equally. We may thus view (5.3) as defining
a model on the complete graph rather than the lattice, where the complete graph
KN consists of N vertices and an edge between any pair of vertices.

Example 5.1. The mean-field XYZ-model is obtained by taking the 2-body
interaction

��L =

⇢
(J1S(1)

x
S(1)

y
+ J2S(2)

x
S(2)

y
+ J3S(3)

x
S(3)

y
), if L = {x, y}, x 6= y,

0, otherwise.

Gibbs-states for the models (5.3) can be defined using tangent functionals,
entropy, KMS- or RAS-condition, as in the case of Zd. Most convenient in this
setting is the variational definition through entropy. We define

A� =
KX

k=1

�{1,...,k}, s(⇢) = lim
N!1

1

N
(�tr ⇢N log ⇢N),

where ⇢N is the density matrix, with respect to the normalized trace tr (·) =
1

nN Tr (·), for the restriction of the state ⇢ to AN . Existence of the specific entropy
s(·) is proved as for Zd and it has the same properties, in particular it is a�ne.

Definition 5.2. A permutation-invariant Gibbs state for the model (5.3)
is a permutation-invariant state ⇢ on A which minimizes the free energy
functional

f�,�(⇢) = ⇢(A�) �
1

�
s(⇢).

The set of permutation-invariant Gibbs states for the interaction �, at
inverse temperature �, is written G

��

p.i.
.

We note that f�,�(·) is a�ne and G
��

p.i.
convex.

We now focus on the extremal elements of G
��

p.i.
. An analog of Theorem 3.26

(equivalent properties of extremal states) holds in the permutation-invariant set-
ting, with an important strengthening of the notions of mixing and short-range
correlations. Here we say that a state ⇢ is mixing if for all A, B 2 Aloc we have

lim
m!1

⇢(A ⌧mB) = ⇢(A)⇢(B), (5.4)

where ⌧m is the translation x 7! x + m.

Definition 5.3 (Product state). A state ⇢ on A is called a product state
if there is a density matrix ⇢ 2 B(Hn) such that for all N � 1 and all
A 2 AN we have that ⇢(A) = tr (⇢⌦NA). (Equivalently, ⇢N = ⇢⌦N for all
N .)
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Proposition 5.4. Let ⇢ be a permutation-invariant state on A. Then it
is mixing if and only if it is a product state.

Proof. Clearly a product-state is mixing, so we need to prove the converse.
Assume that ⇢ is mixing. Set ⇢ = ⇢1, i.e. for all A 2 A1 = B(Hn) we have

⇢(A) = tr (⇢A). (5.5)

It su�ces to show that for any A1, . . . , AN 2 B(Hn) the operator A =
N

N

j=1
Aj

satisfies

⇢(A) =
NY

j=1

tr (⇢Aj). (5.6)

For any m > N , we can find a permutation fixing 1, 2, . . . , N � 1 and sending N
to m. Thus, by permutation-invariance of ⇢,

⇢(A) = ⇢
⇣ N�1O

j=1

(Aj)j ⌦ (AN)m

⌘
(5.7)

where the extra index denotes which tensor factor the operator acts on. Taking
the limit m ! 1 and using that ⇢ is mixing, we conclude that

⇢(A) = ⇢
⇣ N�1O

j=1

Aj

⌘
⇢(AN) = ⇢

⇣ N�1O

j=1

Aj

⌘
tr (⇢AN). (5.8)

Then (5.6) follows by induction. ⇤
The following is the analog of Theorem 3.26 for permutation-invariant states.

Theorem 5.5. Assume that ⇢ 2 Ep.i.. The following are equivalent:

(a) ⇢ is extremal in Ep.i.

(b) ⇢ is mixing
(c) ⇢ is a product state.

Furthermore, if ⇢ 2 G
��

p.i.
, then the above are all equivalent to:

(d) ⇢ is extremal in G
��

p.i.

Remark 5.1. The fact that the extremal elements of Ep.i. are precisely the
product states is (essentially) the quantum de Finetti theorem.

Proof. Let us start with the equivalence of (a), (b) and (c). We already
established the equivalence of (b) and (c) in Proposition 5.4. We prove that (a)
) (b) and then that (c) ) (a).

For (a) ) (b), assume that (b) fails (we will show that (a) then fails). There
are then A, B 2 Aloc such that ⇢(A⌧mB) 6! ⇢(A)⇢(B). By modifying B, if
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necessary, we can assume that B � 0 and ✓ := ⇢(B) 2 (0, 1). Define, using
subsequences if necessary,

⇢
1
(·) := lim

m!1

⇢(· ⌧mB)

⇢(B)
, ⇢

2
(·) := lim

m!1

⇢(· ⌧m(1l � B))

1 � ⇢(B)
. (5.9)

One may check that ⇢
1
,⇢

2
are states and they satisfy

⇢ = ✓⇢
1
+ (1 � ✓)⇢

2
. (5.10)

Furthermore, ⇢
1
,⇢

2
are permutation-invariant: given any N and any permutation

of 1, . . . , N , when m is large enough the permutation does not a↵ect ⌧mB. Thus
we found a non-trivial decomposition of ⇢ in Ep.i, i.e. (a) fails.

For (c) ) (a), assume that ⇢ is a product state but not extremal. Then there
is a non-trivial decomposition (5.10) with ⇢

1
,⇢

2
2 Ep.i.. Moreover, we can assume

⇢
1
,⇢

2
to be extremal (by the Krein–Milman theorem Ep.i. is the convex hull of

its extreme points). Using the implications we already proved, this means that
⇢

1
,⇢

2
are product states. Let ⇢, ⇢1, ⇢2 denote the (single-site) density matrices

for ⇢,⇢
1
,⇢

2
respectively:

tr (⇢⌦N
·) = ✓tr (⇢⌦N

1
·) + (1 � ✓)tr (⇢⌦N

2
·). (5.11)

Since ⇢
1

6= ⇢
2

we have ⇢1 6= ⇢2, so there exits A 2 A1 such that tr ⇢1A 6= tr ⇢2A.
We may further assume that A is positive-definite and satisfies tr ⇢A = 1. Then
(5.11) applied to A⌦N gives

1 = ✓(tr ⇢1A)N + (1 � ✓)(tr ⇢2A)N . (5.12)

Not both of tr ⇢1A and tr ⇢2A can equal 1, so the right-hand-side of (5.12) goes
either to 0 or to 1, a contradiction.

Now assume that ⇢ is a Gibbs state. Clearly (a) implies (d) in this case. We
prove that (d) ) (b), which then links up to the chain of equivalences already
proved. As above, assume that (b) fails, and use the same decomposition (5.9)
and (5.10). We only need to check that ⇢

1
and ⇢

2
are in fact Gibbs states. Since ⇢

is a Gibbs state, it minimizes f�,�(·) over Ep.i. (Definition 5.2). Moreover, f�,�(·)
is a�ne, so we have

f�,�(⇢) = ✓f�,�(⇢
1
) + (1 � ✓)f�,�(⇢

2
). (5.13)

Since ⇢
1
,⇢

2
2 Ep.i., we have f�,�(⇢

1
), f�,�(⇢

2
) � f�,�(⇢) and if either of them

was > f�,�(⇢) we would get a contradiction from (5.13). Hence, both ⇢
1
,⇢

2
are

minimizers and therefore Gibbs states. ⇤

5.2. The mean-field equation

We now restrict to the case of two-body interactions, meaning that �L = 0
unless |L| = 2. The results and arguments are easily extended to many-body
interactions. Write �x,y for �{x,y}.



5.2. THE MEAN-FIELD EQUATION 75

In what follows we will mostly work with Hilbert spaces of fixed dimension
and therefore find it more convenient to work the ‘big trace’ Tr rather than the
‘little trace’ tr . Recall the partial trace Tr 2 : B(H ⌦ H) ! B(H) defined to
satisfy Tr 2(A ⌦ B) = ATr (B) (and linearity). Given a density matrix ⇢ 2 B(H),
with respect to Tr i.e. satisfying Tr ⇢ = 1, define the ‘on-site Hamiltonian’

H⇢ = Tr 2

�
(1l ⌦ ⇢)�1,2

�
. (5.14)

Theorem 5.6 (Fannes–Spohn–Verbeure). Let � be a permutation-
invariant two-body interaction. Then the extremal elements of G

�

p.i.
(�)

are those product states whose density matrix ⇢ (with Tr ⇢ = 1) minimizes
the function

f(⇢) = Tr ⇢H⇢ + 1

�
Tr ⇢ log ⇢.

Proof. The fact that all extremal permutation-invariant states are product
states was shown in Theorem 5.5. By the variational principle, Definition 5.2,
the product state ⇢ minimizes

⇢(A�) �
1

�
s(⇢) = tr (⇢⌦2�1,2) + 1

�
tr ⇢ log ⇢. (5.15)

We used that tr ⇢⌦N log ⇢⌦N = Ntr ⇢ log ⇢. Here tr ⇢ = 1, that is Tr ⇢ = n. We
now rewrite (5.15) in terms of Tr . We have

tr (⇢⌦2�1,2) = Tr (( ⇢

n
)⌦2�1,2), tr ⇢ log ⇢ = Tr ⇢

n
log ⇢

n
+ log n,

where Tr ⇢

n
= 1. Letting ⇢̃ = ⇢

n
we get

⇢(A�) �
1

�
s(⇢) = Tr ⇢̃⌦2�1,2 + 1

�
(Tr ⇢̃ log ⇢̃ + log n).

Since Tr ⇢̃⌦2�1,2 = Tr ⇢̃H⇢̃, the claim follows. ⇤
The first-order condition for a minimizer leads to the following non-linear

equation for ⇢.

Proposition 5.7 (Mean-field equation). Let ⇢ be a density matrix (Tr ⇢ =
1) which minimizes the function f(⇢) in Theorem 5.6. Then ⇢ satisfies

⇢ =
e�2�H⇢

Tr e�2�H⇢

.

The mean-field equation is a necessary, but not su�cient, condition for a
minimiser of f(⇢).

Proof. The proof is similar to the solution to Exercise 3.7. We first show
that the minimizers of f are in the interior of the set of density matrices. To
see this, let ⇢ belong to its boundary. Then its kernel has positive dimension
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(meaning it has the eigenvalue 0) and there exists a density matrix ⇢0 that lives
in the kernel, satisfying ⇢⇢0 = 0. Then we can check that

f((1 � ")⇢ + "⇢0) =Tr ((1 � ")⇢ + "⇢0)⌦2�1,2

+ 1

�

⇥
(1 � ")Tr ⇢ log ⇢ + "Tr ⇢0 log ⇢0 + (1 � ") log(1 � ") + " log "

⇤
.

It is clear that " = 0 is not a minimum, as the last term is negative and stronger
than linear.

Now let ⇢ be a minimizer and let ⌘ be any Hermitian matrix with Tr ⌘ = 0.
Since ⇢ is a stationary point we get:

0 =
d

d"
f(⇢ + "⌘)|"=0 = 2Tr ⌘H⇢ + 1

�
Tr ⌘ log ⇢ = Tr ⌘(2H⇢ + 1

�
log ⇢). (5.16)

Then 2H⇢ + 1

�
log ⇢ must be a scalar matrix, and since Tr ⇢ = 1 the result follows.

⇤

5.3. Gibbs states of some mean-field models

We use the theory above to characterize the permutation-invariant Gibbs
states of some mean-field systems based on the xyz-model (Example 5.1).

5.3.1. The spin-
1

2
Heisenberg model. Consider the fully isotropic model

for spin 1

2
, that is we take n = 2 and J1 = J2 = J3 = 1. Thus we have the

interaction

�L =

⇢
�~Sx · ~Sy, if L = {x, y}, x 6= y,
0, otherwise.

(5.17)

We identify the density matrices ⇢ corresponding to extremal states. From Exer-
cise 1.7 we know that �1,2 = �(1

2
T1,2�

1

4
) where T1,2 is the transposition operator.

Thus

(1l ⌦ ⇢)�1,2 = �(1l ⌦ ⇢)(1

2
T1,2 �

1

4
) = �

1

2
⇢ ⌦ 1l + 1

4
1l ⌦ ⇢. (5.18)

Thaking the partial trace we get

H⇢ = �⇢ + 1

4
1l. (5.19)

Any 2 ⇥ 2 density matrix can be written (compare Exercise 3.4) in the form

⇢ = 1

2
1l + ~a · ~S, ~a = (a1, a2, a3) 2 R3. (5.20)

With this parameterization,

H⇢ = �~a · ~S �
1

4
1l. (5.21)

We need to compute e
�2�H⇢

Tr e
�2�H⇢

, and we see that the scalar term �
1

4
1l in H⇢ cancels.

To compute e2�~a·~S , note that (~a · ~S)2 = 1

4
k~ak

2, so from the power series expansion
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of the exponential we get

e2�~a·~S = cosh
�
�k~ak

�
1l +

sinh
�
�k~ak

�

1

2
k~ak

(~a · ~S). (5.22)

Then Tr e2�~a·~S = 2 cosh
�
�k~ak

�
, so

e�2�H⇢

Tr e�2�H⇢

= 1

2
1l + (~a · ~S)

tanh
�
�k~ak

�

k~ak
. (5.23)

The mean-field equation reduces to

(~a · ~S)
⇣tanh

�
�k~ak

�

k~ak
� 1

⌘
= 0. (5.24)

One solution is always ~a = 0. If � > 1 =: �c then the equation tanh(�x) = x
has a (unique) positive solution x = x?(�). Any ~a with k~ak = x? thus solves the
mean-field equation. One may check that all such ~a give the same value of the
free energy, and that it is smaller than for ~a = 0 (see Exercise 5.1). It follows
that the extremal permutation-invariant Gibbs states for the spin- 1

2
Heisenberg

xxx-model are indexed by the points on a sphere, that is by SO(3).

5.3.2. Higher spin Heisenberg model. Next, we consider the higher spin
case n � 2, still with J1 = J2 = J3 = 1. Thus we have (5.17), but now with the
spin matrices defined in (1.9):

S(1) = 1

2
(S(+) + S(�)), S(2) = 1

2i
(S(+)

� S(�)), S(3)
|ai = a|ai. (5.25)

where

S(+)
|ai =

p
J(J + 1) � a(a + 1) |a+1i, S(�)

|ai =
p

J(J + 1) � (a � 1)a |a�1i.
(5.26)

The set of Hermitian n ⇥ n matrices forms a real vector space. On this space we
use the (Hilbert–Schmidt) inner product hA, BiHS = Tr A⇤B. The spin matrices
(5.25) are orthogonal with respect to this inner product, indeed Tr S(j)S(k) =
�Tr S(j)S(k) for any j 6= k, as can be seen by performing a rotation which fixes
S(j) while mapping S(k) to its negative. Moreover S(1), S(2), S(3) are orthogonal to
1l since they are traceless. Write S = Span(1l, S(1), S(2), S(3)) and T = S

?, the
orthogonal complement of S in the real vector space of Hermitian n⇥n matrices.
It follows that we can write any n ⇥ n density matrix ⇢ in the form

⇢ = 1

n
1l + ~a · ~S + T, ~a 2 R3, T 2 T . (5.27)

Note that for any j 2 {1, 2, 3} we have (with J = (n � 1)/2 the spin)

Tr (S(j))2 = 1

3
Tr

�
(S(1))2 + (S(2))2 + (S(3))2

�
= 1

3
J(J + 1)(2J + 1)

= 1

12
n(n2

� 1) =: cn.
(5.28)



78 5. MEAN-FIELD SYSTEMS

Thus, expanding the expression (1l ⌦ ⇢)�1,2 and taking the partial trace (using
orthogonality of T to all spin matrices), we get

H⇢ = �cn~a · ~S. (5.29)

The mean-field equation becomes

1

n
1l + ~a · ~S + T =

e2cn�~a·~S

Tr e2cn�~a·~S
(5.30)

At this point we already see the SO(3)-symmetry: if ~a is a solution, then any
rotation of ~a is a solution. Thus it su�ces to look for solutions of the form ~a = xe3

where x = k~ak. Then

1

n
1l + xS(3) + T =

e2cn�xS
(3)

Tr e2cn�S(3) , (5.31)

and since the right-hand-side is diagonal it follows that T is diagonal. Let
us index the diagonal entries of T using m 2 {�J, �J + 1, . . . , J}, i.e. T =
diag (tJ , tJ�1, . . . , t�J). Multiplying both sides of (5.31) by S(3) and taking the
trace, we conclude that x should satisfy

xcn =

P
J

m=�J
m e2cn�xm

P
J

m=�J
e2cn�xm

. (5.32)

One may check that the righ-hand-side is an increasing, concave function of x > 0,
and there is a (unique) positive solution x if and only if � > n/2cn = 6/(n2

� 1).

5.4. Exercises

Exercise 5.1. Complete the calculation after (5.24) as follows. Let ⇢ =
1

2
1l + ~a · ~S be a density-matrix such that x = k~ak is a solution to x = tanh(�x).

Calculate the free energy

f(⇢) = Tr [⇢H⇢] + 1

�
Tr [⇢ log ⇢].

Deduce that the set of extremal permutation-invariant Gibbs states is in one-to-
one correspondence with the 2-sphere when � > 1.

Exercise 5.2. Now consider the XXZ-case J1 = J2 = 1, J3 = � > 1.
Calculate all density matrices ⇢ satisfying the mean-field consistency equation

⇢ =
e�2�H⇢

Tr e�2�H⇢

Which of these minimize the free energy? Use your conclusions to explicitly de-
scribe the set of extremal permutation-invariant Gibbs states.


