
CHAPTER 2

Fermionic and bosonic systems

These systems are naturally defined in the continuum space but they also
makes sense on lattices, where the setting is simpler and relevant for our pur-
pose. Excellent introductory textbooks include Martin and Rothen [2004], ... A
thorough description of systems in the continuum can be found in Bratteli and
Robinson [1987].

2.1. Fock spaces

The Hilbert space for a single particle in ⇤ b Zd is `2(⇤). Recall that `2(⇤)
is the vector space C⇤ with inner product

h'| i =
X

x2⇤

'(x) (x), ', 2 `2(⇤). (2.1)

A natural basis is {ex}x2⇤ where these functions are defined by ex(y) = �x,y. The
dimension of `2(⇤) is |⇤|.

The Hilbert space H⇤,n for n distinguishable particles is the tensor product
⌦

n

i=1
`2(⇤). Its dimension is |⇤|

n and it can be identified with the linear space
`2(⇤n) of functions of n sites. Then

H⇤,n = ⌦
n

i=1
`2(⇤) ⇠= `2(⇤n). (2.2)

A basis for ⌦
n

i=1
`2(⇤) consists of the functions

n nO

i=1

exi

o

x1,...,xn2⇤

, (2.3)

where the functions exi
are as above. A basis for `2(⇤n) consists of the functions

ex1,...,xn
that satisfy

ex1,...,xn
(y1, . . . , yn) =

nY

i=1

�xi,yi
. (2.4)

As physicists have progressively understood in the early days of Quantum
Mechanics, the Hilbert space for indistinguishable particles is di↵erent. Parti-
cles fall in two kinds of species: the symmetric bosons and the antisymmetric
fermions. The latter include the electrons and are therefore very relevant to
condensed matter physics. The former are also relevant in an indirect way, as
they can describe composite particles (made of an even number of fermions) or
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16 2. FERMIONIC AND BOSONIC SYSTEMS

virtual particles (such as the phonons that describe lattice vibrations). The
correct Hilbert spaces are the symmetric and antisymmetric subspaces of H⇤,n.
To define them we introduce the symmetrisation operator P+ and the an-

tisymmetrisation operator P�. They can be defined both on ⌦
n

i=1
`2(⇤) and

`2(⇤n). First, the action of P+ is

�
P+'

�
(x1, . . . , xn) =

1

n!

X

�2Sn

'(x�(1), . . . , x�(n)), ' 2 `2(⇤n)

P+

nO

i=1

'i =
1

n!

X

�2Sn

nO

i=1

'�(i), 'i 2 `2(⇤) for i = 1, . . . , n.

(2.5)

Here, Sn denotes the symmetric group and the sum is over permutations of n
elements. Second, the action of P� is

�
P�'

�
(x1, . . . , xn) =

1

n!

X

�2Sn

(�1)�'(x�(1), . . . , x�(n)), ' 2 `2(⇤n)

P�

nO

i=1

'i =
1

n!

X

�2Sn

(�1)�

nO

i=1

'�(i), 'i 2 `2(⇤) for i = 1, . . . , n,

(2.6)

where (�1)� is the signature of the permutation � (it is equal to +1 if � can be
written as the product of an even number of transpositions; it is �1 if the number
of transpositions is odd). Note that P± are Hermitian projection operators in the
sense that

P 2

±
= P±, P ⇤

±
= P±. (2.7)

The symmetric subspace H
(+)

⇤,n
, resp. antisymmetric subspace H

(�)

⇤,n
, are then

H
(±)

⇤,n
⇠= P±`

2(⇤n) ⇠= P±

nO

i=1

`2(⇤). (2.8)

These spaces consist of symmetric or antisymmetric functions. We can identify

H
(+)

⇤,n
=
n
' 2 C⇤ : '(x�(1), . . . , x�(n)) = '(x1, . . . , xn) 8� 2 Sn

o
;

H
(�)

⇤,n
=
n
' 2 C⇤ : '(x�(1), . . . , x�(n)) = (�1)�'(x1, . . . , xn) 8� 2 Sn

o
.

(2.9)

We now introduce the notion of occupation numbers. They are a con-
venient way to describe the spaces of symmetric and antisymmetric functions.
Let

N
(+)

⇤,n
=
�
(nx)x2⇤ : nx 2 N and

X

x2⇤

nx = n
 
;

N
(�)

⇤,n
=
�
(nx)x2⇤ : nx 2 {0, 1} and

X

x2⇤

nx = n
 
.

(2.10)
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The set N
(�)

⇤,n
is nonempty only if n  |⇤|. The goal now is to check that

H
(±)

⇤,n
⇠= `2(N (±)

⇤,n
). (2.11)

To see this, we define the vector |ni in H
±

⇤,n
, for n = (nx) 2 N

(±)

⇤,n
:

|ni =
⇣ n!Q

x
nx!

⌘1/2

P+ex1,...,xn
in H

(+)

⇤,n
;

|ni = (n!)1/2P+ex1,...,xn
in H

(�)

⇤,n
.

(2.12)

The vectors ex1,...,xn
above are the basis vectors defined in (2.4); the sites x1, . . . , xn

are chosen so that #{i = 1, . . . , n : xi = x} = nx for all x 2 ⇤. The order
of (x1, . . . , xn) does not matter for P+ex1,...,xn

. The order a↵ects the sign for
P�ex1,...,xn

so the sites should satisfy x1 � · · · � xn where � is some fixed total
order on ⇤. One can check that the prefactors have been chosen so that |ni

is normalised, see Exercise 2.3. It is not too hard to check that hn0
|ni = 0 if

n0
6= n. Since the vectors ex1,...,xn

span H⇤,n, it follows that {|ni}
n2N

(±)
⇤,n

is an

orthonormal basis for H
(±)

⇤,n
. The dimensions of H

(+)

⇤,n
and H

(�)

⇤,n
are then equal to

the cardinalities of N
(±)

⇤,n
; we get

dim H
(+)

⇤,n
= |N

(+)

⇤,n
| =

⇣n + |⇤| � 1
|⇤| � 1

⌘
,

dim H
(�)

⇤,n
= |N

(�)

⇤,n
| =

⇣
|⇤|

n

⌘
if n  |⇤|;

(2.13)

this is verified in Exercise 2.4.
Next we introduce the Fock spaces that describe systems with variable num-

bers of particles. Let

F
(+)

⇤
=

1M

n=0

H
(+)

⇤,n
, F

(�)

⇤
=

|⇤|M

n=0

H
(�)

⇤,n
. (2.14)

Here H
(±)

⇤,0
⇠= C by definition. An element of F

(+)

⇤
is an 1-tuple ('0,'1, . . . )

where each 'n is a vector in H
(+)

⇤,n
. The inner product in F

(+)

⇤
is defined by

h', i =
X

n�0

h'n, ni
H

(+)
⇤,n

. (2.15)

The dimension of F
(+)

⇤
is infinite. In terms of occupation numbers, we have

F
(+)

⇤
⇠= `2(N (+)

⇤
) (2.16)

where
N

(+)

⇤
=
[

n�0

N
(+)

⇤,n
= N⇤. (2.17)
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An element of F
(�)

⇤
is an |⇤|-tuple ('0,'1, . . . ,'|⇤|) where 'n is a vector in H

(�)

⇤,n
;

the inner product is defined by

h', i =
|⇤|X

n=0

h'n, ni
H

(�)
⇤,n

. (2.18)

The dimension of F
(�)

⇤
is 2|⇤|. In terms of occupation numbers, we have

F
(�)

⇤
⇠= `2(N (�)

⇤
) (2.19)

where

N
(�)

⇤
=
[

n�0

N
(+)

⇤,n
= {0, 1}⇤. (2.20)

2.2. Creation and annihilation operators

We define annihilation operators ax and creation operators a⇤

x
in `2(N (±)

⇤,n
) or

`2(N (±)

⇤
); this immediately extends to H

(±)

⇤,n
and F

(±)

⇤
.

Bosons: ax : `2(N (+)

⇤,n
) ! `2(N (+)

⇤,n�1
)

ax|ni =

(
p

nx |n � �xi if nx � 1,

0 if nx = 0.

a⇤

x
: `2(N (+)

⇤,n
) ! `2(N (+)

⇤,n+1
)

a⇤

x
|ni =

p
nx + 1 |n + �xi.

(2.21)

These definitions extend to `2(N (+)

⇤
) but we need to specify the domain since these

are unbounded operators in an infinite-dimensional space. Consider `2
f
(N (+)

⇤
), the

linear space of finite linear combinations of {|ni : n 2 N
(+)

⇤
}. This domain is

dense in `2(N (+)

⇤
), and ax, a⇤

x
can be defined as operators `2

f
(N (+)

⇤
) ! `2(N (+)

⇤
).

The operators can be closed by taking the closure of their graphs.
In the exercises (Exercise 2.5) you can check that a⇤

x
is the adjoint of ax (and

conversely), and that these bosonic operators satisfy the commutation relations

[ax, ay] = 0; [a⇤

x
, a⇤

y
] = 0; [ax, a

⇤

y
] = �x,y1l. (2.22)

One can also check that

a⇤

x
ax|ni = nx |ni. (2.23)
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We now turn to fermions and recall the order � on the sites of ⇤.

Fermions: ax : `2(N (�)

⇤,n
) ! `2(N (�)

⇤,n�1
)

ax|ni =

(
(�1)

P
y�x

ny |n � �xi if nx = 1,

0 if nx = 0.

a⇤

x
: `2(N (�)

⇤,n
) ! `2(N (�)

⇤,n+1
)

a⇤

x
|ni =

(
(�1)

P
y�x

ny |n + �xi if nx = 0,

0 if nx = 1.

(2.24)

The definitions extend to `2(N (�)

⇤
) and F

(�)

⇤
.

These operators are also adjoint of each other. They satisfy the anticommu-
tation relations

{ax, ay} = 0; {a⇤

x
, a⇤

y
} = 0; {ax, a

⇤

y
} = �x,y1l. (2.25)

Here also we have that

a⇤

x
ax|ni = nx |ni. (2.26)

One-body operators can be conveniently represented by creation and anni-
hilation operators. Let B = (bx,y)x,y2⇤ be an operator on `2(⇤) (i.e. a ⇤ ⇥ ⇤
complex matrix). This yields the following operator on H⇤,n:

B =
nX

i=1

Bi, (2.27)

where

Bi = 1l ⌦ · · · ⌦ B|{z}
ith particle

⌦ · · · ⌦ 1l. (2.28)

One easily checks that [B, P±] = 0 so B can also be viewed as an operator on

H
(+)

⇤,n
or H

(�)

⇤,n
.

Lemma 2.1. On H
(+)

⇤,n
or H

(�)

⇤,n
, we have

B =
X

x,y2⇤

bx,ya
⇤

x
ay.

Proof. Here we restrict to bosons, fermions are similar. Recalling that
hm|a⇤

x
= haxm|, the matrix elements of the right side are

hm|bx,ya
⇤

x
ay|ni =

p
mxny �m��x,n��y

. (2.29)
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Using that P+ = P ⇤

+
commutes with B we get

hm|B|ni =
n!pQ

z
mz!nz!

hex1,...,xn
|P 2

+
B|ey1,...,yn

i

=
n!pQ

z
mz!nz!

nX

i=1

hex1,...,xn
|P 2

+
Bi|ey1,...,yn

i.

(2.30)

Here the sites x1, . . . , xn are compatible with m and the sites y1, . . . , yn are com-
patible with n. It su�ces to consider a matrix B with a single nonzero entry,
bx,y = 1 for some fixed x, y 2 ⇤. The general case follows by linearity. For this
B, we have that

Bi|ey1,...,yn
i = �yi,y

|ey1,...,x,...,yn
i (2.31)

where the vector on the right has an x in position i. Thus

hm|B|ni =
⇣ n!Q

z
nz!

⌘1/2
nX

i=1

�yi,y
hm|P+|ey1,...,x,...,yn

i

=
⇣ n!Q

z
nz!

⌘1/2

ny

⇣ n!Q
z
(nz � �y + �x)!

⌘�1/2

hm|n � �y + �xi

= ny

�
nx+1

ny

)1/2 �m��x,n��y
.

(2.32)

This agrees with (2.29). ⇤

One can generalise this lemma to many-body operators. A natural hamilton-
ian for lattice particles with two-body interactions is

H⇤ = �

nX

i=1

�i +
X

1i<jn

Vi,j, (2.33)

where �i = 1l ⌦ · · · ⌦ � ⌦ · · · ⌦ 1l and � is the discrete laplacian such that

(�')(x) =
X

y2⇤

tx,y'(y). (2.34)

Here tx,y = ty,x 2 R is finite-range or fast decaying (the standard case involves
same sites and nearest-neighbours). The interactions are given by a multiplication
operator

Vi,j'(x1, . . . , xn) = W (xi � xj)'(x1, . . . , xn). (2.35)

Here W (x) is a real function, of finite range or with fast decay. The hamiltonian
above represents the energy of n particles, that consists of kinetic energy (the
laplacians) and pair interactions (given by W ). The hamiltonian above is both
symmetric and antisymmetric, in the sense that [H⇤, P±] = 0, and its action on
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H
(±)

⇤,n
can be written as

H⇤ = �

X

x,y2⇤

tx,ya
⇤

x
ay+

1

2
W (0)

X

x2⇤

a⇤

x
ax(a

⇤

x
ax�1)+ 1

2

X

x,y2⇤

x 6=y

W (x�y)a⇤

x
axa

⇤

y
ay. (2.36)

As an operator in F
(+)

⇤
it is unbounded. It is well defined on `2

f
(N (+)

⇤
); it is

symmetric, and its closure is self-adjoint.
One can take the limit W (0) ! 1, which yields hard-core bosons, where at

most one particle per site is allowed. The Hilbert space is then identical to that
of S = 1

2
quantum spins. One can identify nx = 0 with �x = �

1

2
, and nx = 1

with �x = 1

2
. As for operators we have

ax ⌘ S(�)

x
, a⇤

x
⌘ S(+)

x
, a⇤

x
ax ⌘ S(3)

x
+ 1

2
. (2.37)

2.3. Bose–Einstein condensation

We say that a two-body potential W is stable if there exists a constant B
such for all n 2 N and all x1, . . . , xn 2 Zd, we have the lower bound

X

1i<jn

W (xi � xj) � �Bn. (2.38)

Typical examples are nonnegative (repulsive) potentials (the inequality is trivial,
with B = 0) and potentials that are repulsive at short distance but attractive
at longer distance. This condition guarantees that the particles of a large sys-
tem spread everywhere, and do not collapse in a small region. This property is
necessary for statistical mechanics to hold.

We define the free energy of a particle system by

f⇤,n(�) = �
1

�|⇤|
log Tr

H
(±)
⇤,n

e��H⇤ .

f(�, ⇢) = lim
⇤*Zd

f⇤,b⇢|⇤|c(�).
(2.39)

Here, the parameter ⇢ is the density. Existence of the limit can be proved in a
similar fashion as for spin systems (the stability condition gives a lower bound
for f⇤,n that is necessary for the subadditive argument). Introducing the number
operator

N⇤|'i = n|'i, ' 2 H
(±)

⇤,n
, (2.40)

we define the pressure by

p⇤(�, µ) =
1

|⇤|
log Tr

F
(±)
⇤

e��(H⇤�µN⇤) .

p(�, µ) = lim
⇤*Zd

p⇤(�, µ).
(2.41)

The functions f(�, ⇢) and p(�, µ) are related by Legendre transforms.
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The hamiltonian commutes with the number of particles in the box, [H⇤, N⇤] =
0, which implies the presence of a continuous U(1) symmetry:

H⇤ = ei✓N⇤ H⇤ e�i✓N⇤ , ✓ 2 [0, 2⇡). (2.42)

The corresponding order parameter is the o↵-diagonal long range order pro-
posed by Penrose and Onsager [1956]: the correlation function ha⇤

x
ayi⇤,� (in either

the canonical or gran canonical ensemble). The question is whether it remains
positive in the infinite volume limit, and as kx � yk ! 1.

In the hard-core Bose, which is equivalent to the quantum XY model, o↵-
diagonal long range order is equivalent to spontaneous magnetisation in the XY
plane. The latter can be proved using reflection positivity (Dyson, Lieb, Simon
[1978], see previous chapter). This is the only known proof of Bose–Einstein
condensation in an interacting Bose gas, in the standard setting.

We conclude the chapter by describing the Bose–Einstein condensation of the
ideal gas (no interactions) on the lattice.

Let ⇤per

`
= {1, . . . , `}d with periodic boundary conditions. We consider the

model (2.36) with W ⌘ 0.

Theorem 2.2.

lim
`!1

1

|⇤per

`
|

X

x2⇤
per
`

ha⇤

0
axi⇤

per
`

,�,b⇢`dc = max(0, ⇢� ⇢c)

where the critical density is equal to

⇢c =
1

(2⇡)d

Z

[�⇡,⇡]d

1

e�"(k) � 1
dk.

Recall that "(k) =
P

x
t0,x e�ikx . The critical density is finite when d � 3.

In the continuum we have "(k) = k2; one can expand the fraction as geometric
series, integrate the gaussians, and one gets the well-known formula of Einstein.

Proof. Let us introduce the creation and annihilation operators of the Fourier
modes, namely

âk =
1

`d/2

X

x2⇤
per
`

e�ikx ax, k 2 ⇤⇤

`
. (2.43)

Then we have

ax =
1

`d/2

X

k2⇤
⇤
`

eikx âk (2.44)

and X

x,y2⇤
per
`

tx,ya
⇤

x
ay =

X

k2⇤
⇤
`

"(k)â⇤

k
âk. (2.45)
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One can also check that the eigenvalues of â⇤

k
âk are 0, 1, 2, . . . . We also have

1

`d

X

x2⇤
per
`

ha⇤

0
axi⇤

per
`

,�,n =
1

`2d

X

x,y2⇤
per
`

ha⇤

x
ayi⇤

per
`

,�,n =
1

`d
hâ⇤

0
â0i⇤

per
`

,�,n. (2.46)

The relevant expectation can then be written using random partitions (nk)k2⇤
⇤
`

indexed by ⇤⇤

`
and satisfying

P
k
nk = n. Namely,

1

`d

X

x2⇤
per
`

ha⇤

0
axi⇤

per
`

,�,n =
1

`d
hâ⇤

0
â0i⇤

per
`

,�,n =
1

Z⇤
per
`

,�,⇢

X

(nk)
k2⇤⇤

`

:
P

k
nk=n

n0

`k
e��

P
k

"(k)nk .

(2.47)

We denote P,E the corresponding probability and expectation where a partition
(nk) has probability proportional to e��

P
k

"(k)nk . We have

1

`d

X

x2⇤
per
`

ha⇤

0
axi⇤

per
`

,�,n =
1

`d
E[n0] =

n

`d
�

1

`d

X

k 6=0

E[nk]

=
n

`d
�

1

`d

X

k 6=0

X

i�1

P[nk � i]

=
n

`d
�

1

`d

X

k 6=0

1

Z⇤
per
`

,�,n

X

i�1

X

(n
k0 ):

P
k0 nk=n,nk�i

e��
P

k0 "(k
0
)n

k0

=
n

`d
�

1

`d

X

k 6=0

X

i�1

e��"(k)i
Z⇤

per
`

,�,n�i

Z⇤
per
`

,�,n

�
n

`d
�

1

`d

X

k 6=0

1

e�"(k) � 1
.

(2.48)

Notice that the ratio of partition functions is equal to P[n0 � i] which is less than
1. As ` ! 1, the last term converges to ⇢� ⇢c.

It is perhaps worth noting the infrared bound E[nk]  ( e�"(k)
� 1)�1, which

implies long-range order as in the case of spin systems.
In order to prove the converse bound, let us observe that the pressure of the

ideal Bose gas can be computed exactly, yielding (for µ < 0)

p(�, µ) = lim
`!1

1

`d

X

(nk)

e��
P

k
("(k)�µ)nk = �

1

(2⇡)d

Z

[�⇡,⇡]d

log
⇣
1 � e��("(k)�µ)

⌘
dk.

(2.49)

The density is

⇢(�, µ) =
1

�

@

@µ
p(�, µ) =

1

(2⇡)d

Z

[�⇡,⇡]d

1

e�("(k)�µ) � 1
dk. (2.50)
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The critical density is equal to the limit µ ! 0� of ⇢(�, µ). The free energy is
given by the Legendre transform

f(�, ⇢) = sup
µ<0

�
⇢µ �

1

�
p(�, µ)

�
. (2.51)

The plot of the pressure and its Legendre transform can be found in Fig. 2.1.

Figure 2.1. (a) The pressure of the ideal Bose gas; (b) its Le-
gendre transform, the free energy.

For any ⌘ � 0, we have that

lim
`!1

1

�`d
logP[n0 � `d⌘] = lim

`!1

1

�`d
log

Z⇤
per
`

,�,n�`d⌘

Z⇤
per
`

,�,n

= f(�, ⇢)�f(�, ⇢�⌘). (2.52)

If ⌘ > max(0, ⇢� ⇢c), we have

P[n0 � `d⌘]  e�`
d
�

(2.53)

for some � > 0. It follows that 1

`dE[n0]  max(0, ⇢ � ⇢c), which completes the
proof. ⇤

2.4. The Hubbard model

The Hubbard model is a lattice model that involves itinerant electrons, which
are fermions carrying S = 1

2
spins. It is the most important model in condensed

matter physics. It is a gross simplification of the description of a large system of
electrons that interact among themselves and with fixed nuclei. It is nonetheless
a di�cult model to study, and people expect it to have very rich phase diagrams.
At low temperatures, and depending on the lattice and on the particle density,
the system may exhibit spontaneous magnetisation, antiferromagnetic long-range
order, or superconductivity. We recommend the recent book of Tasaki [29] for an
excellent introduction to the Hubbard model. Here we give a minimal introduc-
tion to the setting and we show a connection to the Heisenberg antiferromagnet
using a suitable perturbative expansion.
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Let ⇤ b Zd. A configuration of electrons carrying spins is denoted ⌘ = (⌘x,�)
where ⌘x,� 2 {0, 1} with x 2 ⇤ and � 2 {", #}. Let H⇤ denote the set of
configurations:

H⇤ = {0, 1}⇤⇥{",#}
' {0, ", #, 2}⇤. (2.54)

We have |H⇤| = 4|⇤| . The Hilbert space is H⇤ = `2(H⇤) whose dimension is 4⇤|.

!1
(0 , 0)

!2
!3!4!5

!6
!7 !

"
#

$

Figure 1: Spiral order in ZZ2

set X := {z → ZZω , z ↑ X} of lattice sites which are smaller than X, or belong to
X, is finite.

(ii) For any finite subset X ↓ ZZω two operator algebras acting on HX are given

(a) The (local) field algebra FX ↓ L(H
X

),

(b) the (local) observable algebra AX ⊆ FX ,

which have the following properties:

1) If X ↓ Y and x ≺ y, for all x → X and all y → Y \ X, then there is a natural
embedding of FX into FY : An operator B → FX corresponds to the operator B ⊗

1HY \X
in FY . In the following, we write B for both operators B → FX and B ⊗

1HY \X
→ FY .

2) For the infinite system, the (quasilocal) field algebra is the norm closure of the
union of all local field algebras, i.e.,

F :=
⋃

X→ZZω

FX

norm

, (4.2)

(the limit being taken through a sequence of increasing subsets of ZZω , where in-
creasing refers to the (spiral) ordering defined above). Similarly, the (quasilocal)
observable algebra for the infinite system is defined as

A :=
⋃

X→ZZω

AX

norm

. (4.3)

The group of space translations ZZω acts as a ≃-automorphism group, {ωa : a → ZZω
}

on the algebras F and A, with

FX+a = ωa(FX), AX+a = ωa(AX), (4.4)

for any X ↓ ZZω and a → ZZω .

3) Commutativity condition: If X ∩ Y = ⇒, then for any A → FX , B → AY

[A, B] = 0 . (4.5)
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Figure 2.2. The spiral order in Z2 (figure taken from [6]).

We need to choose an order on ⇤ ⇥ {", #}. It is convenient to consider the
spiral order in Zd (it is illustrated in Fig. 2.2), which has the advantage that the
number of preceding sites is always finite. We also decide that #<". Then

(x, �) < (y, �0) () x < y or
�
x = y and � < �0

�
. (2.55)

This allows to define the creation and annihilation operators as follows. Given
⌘ 2 H⇤ and x 2 ⇤, � 2 {", #},

c⇤

x,�
|⌘i = (�1)

P
(y,�0)<(x,�) ⌘

y,�0

(
|⌘ + �x,�i if ⌘x,� = 0,

0 otherwise.

cx,�|⌘i = (�1)
P

(y,�0)<(x,�) ⌘
y,�0

(
|⌘ � �x,�i if ⌘x,� = 1,

0 otherwise.

(2.56)

The prefactor looks cumbersome but one rarely invokes it in calculations. One
should rather keep in mind that c⇤

x,�
and cx,� are adjoint of each other, and that we

have the following anticommutation relations, for any x, y 2 ⇤ and �, �0
2 {", #}:

{c⇤

x,�
, c⇤

y,�0} = {cx,�, cy,�0} = 0,

{c⇤

x,�
, cy,�0} = �x,y��,�01l.

(2.57)

We also introduce the number operators nx,� = c⇤

x,�
cx,� that satisfy

nx,�|⌘i = ⌘x,�|⌘i. (2.58)

Let nx = nx," + nx,#. Further, all basis vectors can be expressed using a product
a creation operators that act on the “vacuum state” |0i, which is the vector that
corresponds to the empty configuration ⌘ ⌘ 0. Namely,

|⌘i = c⇤

x1,�1
c⇤

x2,�2
. . . c⇤

xN ,�N
|0i. (2.59)
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Here (x1, �1) < · · · < (xN , �N) are such that ⌘xi,�i
= 1 and the order is according

to (2.55). N is the number of particles in the state |⌘i, it is equal to
P

x,�
⌘x,�.

The relations (2.57)–(2.59) are verified in Exercise 2.9.
The Hubbard model depends on three real parameters. t is in front of the

kinetic energy of the electrons and is related to their mass; U is the strength of
the onsite interactions (whose physical origin is the Coulomb interactions between
electrons); µ is the chemical potential that allows to vary the density.

Hubbard hamiltonian:

H⇤ = �t
X

xy2E(⇤)

X

�=#,"

�
c⇤

x,�
cy,� + c⇤

y,�
cx,�

�
+ U

X

x2⇤

nx,"nx,# �µ
X

x2⇤

(nx," + nx,#).

(2.60)

Partition functions and Gibbs states are defined exactly as for spin systems.
The terms in the Hubbard model are made of even numbers of creation and anni-
hilation operators, and they therefore commute when their supports are disjoint.
The construction of the evolution operator, Proposition 3.14, remains valid, and
KMS states are well defined. The other characterisations of infinite volume Gibbs
states also hold.

2.5. Spin operators and symmetries

Using creation and annihilation operators, we define

S(+)
x

= c⇤

x,"
cx,#, S(�)

x
= c⇤

x,#
cx,", S(3)

x
= 1

2
(nx," � nx,#). (2.61)

We further set S(1)
x

= 1

2
(S(+)

x
+ S(�)

x
) and S(2)

x
= 1

2
(S(+)

x
� S(�)

x
). Then we have

(Exercise 2.10)

[S(1)
x

, S(2)
y

] = i�x,yS
(3)
x

, [S(2)
x

, S(3)
y

] = i�x,yS
(1)
x

, [S(3)
x

, S(1)
y

] = i�x,yS
(2)
x

. (2.62)

Let us list some symmetries of the Hubbard hamiltonian.

Proposition 2.3.

(a) SU(2) symmetry: [H⇤,
P

x2⇤
S(i)

x
] = 0 for i = 1, 2, 3.

(b) Gauge invariance: [H⇤,
P

x2⇤
nx] = 0.

The proof is in Exercise 2.11. This allow to construct the unitary operators
U (~a)

⇤
= ei

P
x2⇤ ~a·~Sx , ~a 2 R3, and U (✓)

⇤
= ei✓

P
x2⇤ nx that allow to establish that

finite-volume Gibbs states satisfy

hS(i)
x

i⇤,� = 0, hc⇤

x,"
c⇤

y,#
i⇤,� = 0. (2.63)

But one cannot rule out the existence of infinite-volume Gibbs states where the
above expectations di↵er from 0; the first is a state displaying magnetic properties,
the second is a superconductive state with Cooper pairs.
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Next we consider particle-hole transformations. This is not a symmetry of
the model, but it allows to relate hamiltonians with di↵erent parameters. Let
Uph

x,�
= i(c⇤

x,�
+ cx,�). We then have

(Uph

x,�
)�1cx,�U

ph

x,�
= c⇤

x,�
, (Uph

x,�
)�1c⇤

x,�
Uph

x,�
= cx,�. (2.64)

Let Uph

⇤
=
Q

x2⇤
Uph

x,"
Uph

x,#
. Then we have

(Uph

⇤
)�1H t,U,µ

⇤
Uph

⇤
= H�t,U,U�µ

⇤
+ (U � µ)|⇤|. (2.65)

This is checked in Exercise 2.13. This shows that the sign of t does not matter.

2.6. Relation to the antiferromagnetic Heisenberg model

We now explain a perturbation expansion that applies to half-filling (density
1) and U large. The particular feature of the expansion is to deal with interactions
rather than operators; it was first developed and used in [6].

We consider the hamiltonian H⇤ = H (0)

⇤
+ tT⇤ where

H (0)

⇤
= U

X

x2⇤

(nx," �
1

2
)(nx,# �

1

2
),

T⇤ =
X

xy2E(⇤)

X

�=",#

�
c⇤

x,�
cy,� + c⇤

y,�
cx,�

�
.

(2.66)

This the Hubbard model at half-filling, where a particle-hole symmetry guarantees
that hnxi⇤,� = 1 for any bipartite lattice ⇤ and any � (see Exercise 2.14).

In order to introduce the expansion, recall the definition of the adjoint oper-
ation and of its inverse: For A, B hermitian matrices, we let

adAB = [A, B],

ad�1

A
B =

X

a,a
0
2Spec(A)

a 6=a
0

Pa

B

a � a0
Pa0 . (2.67)

Here Pa is the projector onto the eigensubspace of A with eigenvalue a. One can
check (Exercise 2.15) that adA and ad�1

A
are inverse operations, in the sense that

adAad�1

A
B = ad�1

A
adAB = Bod, (2.68)

where Bod =
P

a 6=a0 PaBPa0 is the o↵-diagonal part of B in the basis of eigenvec-
tors of A.

Let S⇤ such that S⇤

⇤
= �S⇤ and let U⇤ = etS⇤ . By the Lie-Schwinger

expansion (Lemma 3.15) we have

U⇤H⇤U�1

⇤
= H (0)

⇤
+ tT⇤ + tadS⇤H (0)

⇤
+ t2adS⇤T⇤ + 1

2
t2ad2

S⇤
H (0)

⇤
+ O(t3). (2.69)
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We require that T⇤ = �adS⇤H (0)

⇤
= ad

H
(0)
⇤

S⇤, so we choose

S⇤ = ad�1

H
(0)
⇤

T⇤ =
X

xy2E(⇤)

ad�1

H
(0)
⇤

Txy ⌘

X

xy2E(⇤)

Sxy. (2.70)

We also have ad2

S⇤
H (0)

⇤
= �adS⇤T⇤. We obtain the expansion

U⇤H⇤U�1

⇤
= H (0)

⇤
+ 1

2
t2adS⇤T⇤ + O(t3). (2.71)

We can check that

h0, 2|Sxy| ", #i = h2, 0|Sxy| ", #i = �
1

U
= �h", # |Sxy|0, 2i = �h", # |Sxy|2, 0i,

h0, 2|Sxy| #, "i = h2, 0|Sxy| #, "i = +
1

U
= �h#, " |Sxy|0, 2i = �h#, " |Sxy|2, 0i.

(2.72)

We now restrict on the subspace with exactly one particle per site. Let P (1)

⇤

be the corresponding projector, namely

P (1)

⇤
= ⌦x2⇤

�
| "ih" | + | #ih# |

�
. (2.73)

Notice that P (1)

⇤
H⇤P (1)

⇤
= �

1

4
U |⇤|P (1)

⇤
; in order to obtain a nontrivial perturbation

result, we need to expand before we apply the projector! One can check that
P (1)

⇤
(adS⇤T⇤)P (1)

⇤
is a sum of nearest-neighbour terms only. We have

h", # |SxyTxy| ", #i = h#, " |SxyTxy| #, "i = �
2

U
,

h", # |SxyTxy| #, "i = h#, " |SxyTxy| ", #i = +
2

U
.

(2.74)

The matrix elements involving | ", "i and | #, #i are zero. One gets (Exercise
2.16)

P (1)
xy

[Sxy, Txy]P
(1)

⇤
=

8

U
P (1)

⇤

�
~Sx · ~Sy �

1

4

�
P (1)

⇤
. (2.75)

We have obtained:

Theorem 2.4.

P (1)

⇤
U⇤H⇤U�1

⇤
P (1)

⇤
=

4t2

U

X

xy2⇤

P (1)

⇤
~Sx · ~Sy P (1)

⇤
�

1

4
U |⇤|P (1)

⇤
+ O(t3).

The O(t3) term is a sum of local interactions with exponential decay. The
first term is indeed the antiferromagnetic Heisenberg model. This expansion
suggests the existence of a phase with antiferromagnetic long-range order. But
the Hubbard hamiltonian is not reflection positive and such a phase has not been
mathematically proved.
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Exercise 2.1. Verify that the operators P± defined in (2.5)–(2.6) are indeed
projectors.

Exercise 2.2. Let x1, . . . , xn 2 ⇤ such that xi = xj for some i 6= j. Check
that P�ex1,...,xn

= 0.

Exercise 2.3. Let (nx) 2 N
(±)

⇤,n
and (x1, . . . , xn) such that #{i = 1, . . . , n :

xi = x} = nx for all x 2 ⇤. Verify that

kP±ex1,...,xn
k =

✓Q
x2⇤

nx!

n!

◆1/2

.

Exercise 2.4. Verify Eq. (2.13) about the dimensions of the symmetric and
antisymmetric spaces.

Exercise 2.5. Verify that that ax and a⇤

x
are adjoint of one another. In the

bosonic case, this involves their domains.

Exercise 2.6. Verify the commutation relations (2.22) and (2.25).

Exercise 2.7. Give the proof of Lemma 2.1 in the fermionic case.

Exercise 2.8. In this exercise we outline a variant of the proof of Theorem
2.2, starting from the probabilistic representation in (2.47) and (2.48).

(1) Show that we can write

1

`d

X

k 6=0

E[nk] = E[X` | X`  ⇢] (2.76)

where

X` =
1

`d

X

k2⇤
⇤
`
\{0}

Nk (2.77)

and the Nk are independent geometric random variables:

P(Nk = r) = ( e��"(k) )r(1 � e��"(k) ), r � 0. (2.78)

The goal is thus to show that

lim
`!1

E[X` | X`  ⇢] =

⇢
⇢ if ⇢  ⇢c,
⇢c if ⇢ � ⇢c.

(2.79)

(2) Clearly lim`!1 E[X` | X`  ⇢]  ⇢. Show that lim`!1 E[X`] = ⇢c.
(3) Show that

E[(X` � ⇢c)
2] ! 0, as ` ! 1. (2.80)

(4) Use Markov’s inequality to deduce that

lim
`!1

E[X` | X`  ⇢] = ⇢c (2.81)

whenever ⇢ > ⇢c.
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(5) It remains to show that lim`!1 E[X` | X`  ⇢] � ⇢ when ⇢  ⇢c, and
this is the hardest part. It uses ideas from large deviations theory.
(a) Show that

⇤(t) := lim
`!1

1

`d
logE[ et`

d
X` ] (2.82)

exists in [�1, 1] for all t 2 R.
(b) Deduce that for any x < ⇢c

lim
`!1

�
1

`d
logP(X`  x) = ⇤⇤(x) := sup

t2R
(xt � ⇤(t)) (2.83)

(c) For any ⇢  ⇢c and � > 0,

E[X` | X`  ⇢] � (⇢� �)
⇣
1 �

P(X`  ⇢� �)

P(X`  ⇢� �/2)

⌘
. (2.84)

(d) Deduce the result.

Exercise 2.9.

(a) From the definition (2.56) of the creation and annihilation operators,
check that the relations (2.57) and (2.58) hold true.

(b) Check that the vectors |⌘i defined in (2.59) form an orthonormal basis
of H⇤.

(c) Consider a vector of the form (2.59) where (xi, �i) = (xj, �j) for some
i 6= j (such a vector does not correspond to a configurattion). Check that
such a vector is 0.

Exercise 2.10. Check the spin commutation relations in (2.62).

Exercise 2.11. Prove Proposition 2.3. For this, you may find it convenient
to prove

(a) [H⇤,
P

x2⇤
S(±)

x
] = 0, [H⇤,

P
x2⇤

S(3)
x

] = 0.
(b) ei✓nx c⇤

x,�
e�i✓nx = ei✓ c⇤

x,�
and ei✓nx cx,� e�i✓nx = e�i✓ c⇤

x,�
.

Exercise 2.12. Use the symmetries of the Hubbard model to prove the rela-
tions (2.63).

Exercise 2.13. Check that the particle-hole symmetry operator Uph

x,�
is unitary

and check the relations (2.64) and (2.65).

Exercise 2.14. Show that hnxi⇤,� = 1 where the hamiltonian is that of the
half-filled Hubbard model defined in (2.66). The lattice is assumed here to be
bipartite, that is, ⇤ = ⇤A [ ⇤B and E(⇤) only involve edges with one endpoint in
⇤A and the other in ⇤B.

Exercise 2.15. Prove the relations (2.68).
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Exercise 2.16. Check Eqs (2.74) and (2.75). You may use ~Sx·
~Sy = 1

2
(S(+)

x
S(�)

y
+

S(�)
x

S(+)
y

) + S(3)
x

S(3)
y

.


