
CHAPTER 3

Equilibrium States

3.1. States for finite systems

We start by describing states for finite systems, i.e. systems with finitely
many sites. Later we will consider states for infinite systems with no reference
to a Hilbert space. But for now we have a Hilbert space H (whose dimension is
possibly infinite) with an inner product h·, ·i and norm kvk = hv, vi

1/2. We let
B(H) be its space of bounded operators, i.e. the space of linear maps A : H ! H

which have finite operator norm

kAk = sup
v2H

kAvk/kvk. (3.1)

An operator A 2 B(H) is called positive-semi-definite if it can be written A =
B⇤B for some B 2 B(H). One can show (using the spectral theorem) that this
is equivalent to hv, Avi � 0 for all v 2 H.

A state on H is a positive, normalised linear functional on B(H); that is, it
is a map h·i : B(H) ! C that is

(i) linear: hsA + tBi = shAi + thBi for all s, t 2 C and A, B 2 B(H);
(ii) positive: hA⇤Ai � 0 for all A 2 B(H);
(iii) normalised: h1li = 1.

One can check that the operator norm kh·ik = sup
A2B(H)

|hAi|/kAk of any
state h·i is 1. It turns out that states on Hilbert spaces can be represented by
density operators, a very useful property. A density operator ⇢ is a trace-
class (meaning that Tr |⇢| < 1) positive-definite hermitian operator such that
Tr ⇢ = 1. Given a density operator, there corresponds the state

hAi = Tr ⇢A. (3.2)

The converse is also true, that is, each state is represented by a density operator.

Proposition 3.1 (Riesz representation of states). Let h·i be a state
on a Hilbert space H. Then there exists a unique density operator ⇢ such
that hAi = Tr ⇢A for all A 2 B(H).

In the case when H is finite-dimensional, the density matrix ⇢ can be defined
using the matrix elements ⇢i,j = h|jihi|i (with respect to some orthonormal basis)
where we use the Dirac notation (1.3).
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34 3. EQUILIBRIUM STATES

In the infinite-dimensional case, we consider the subspace B2(H) ⇢ B(H) that
consists of bounded operators with finite Hilbert–Schmidt norm

kAkHS =
p

Tr A⇤A. (3.3)

This norm derives from the inner product

hA, BiHS = Tr A⇤B, A, B 2 B2(H). (3.4)

One can check that B2(H) is complete with respect to the Hilbert–Schmidt norm,
and is therefore a Hilbert space. It is dense in B(H). Since kAk  kAkHS we
have B2(H) ⇢ B(H) and a bounded linear functional on B(H) is also a bounded
linear functional on B2(H). We prove Proposition 3.1 using B2(H).

Proof of Proposition 3.1. The standard Riesz representation theorem
implies that B2(H) is self-dual, that is, every linear functional h·i : B2(H) ! C
is represented by a unique operator ⇢ such that

hAi = h⇢, AiHS = Tr ⇢⇤A. (3.5)

for all A 2 B2(H). We check that if h·i is a state, then ⇢ is a density operator.
We have for all ' 2 H with k'k = 1 that

h', ⇢⇤'i = Tr P'⇢
⇤ = hP'i = hP 2

'
i � 0. (3.6)

(Here, P' denotes the projector onto '.) Then ⇢⇤ is positive-definite; it is there-
fore hermitian (Exercise 3.1) so ⇢ � 0 as well. Next, let ('i)1

i=1
denote an or-

thonormal basis of H and Pn the orthogonal projector onto the span of (')n

i=1
.

Since Pn 2 B2(H), we have

Tr ⇢ = lim
n!1

Tr ⇢Pn = lim
n!1

hPni  1. (3.7)

The latter inequality follows from h1l � Pni � 0 since 1l � Pn � 0. Then ⇢ is a
trace-class operator with k⇢k1  1.

If (An) is a sequence of operators in B2(H) that converges to A 2 B(H), we
have from Hölder’s inequality (Proposition A.1) that

��Tr ⇢An � Tr ⇢A
��  k⇢(An � A)k1  k⇢k1kAn � Ak1  kAn � Ak. (3.8)

Then hAi = Tr ⇢A for all A 2 B(H). Finally, the relation h1li = 1 implies that ⇢
is a density operator. ⇤

Note that the “Gibbs state” hAi⇤,�,h = 1

Z⇤,�,h

Tr A e��H⇤,h of (1.39) is in-

deed a state in the sense of the definition above (the Hilbert space H⇤ is finite-
dimensional). The only condition which may not be obvious is the positivity, see
Exercise 3.5.

The set of states is convex: If h·i1, h·i2 are two states, the convex combination
th·i1 + (1 � t)h·i2 is also a state for all t 2 [0, 1]. A state is mixed if it can be
written as a convex combination of distinct states. A state is pure if it is not
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mixed; in other words, pure states are the extremal points of the convex set of
states.

Given ' 2 H with k'k = 1, the corresponding projector P' = | ih | is a
special case of a density operator, hence it gives a state. It is perhaps expected
that this state is pure, and that all pure states are represented by projectors.

Proposition 3.2. A state is pure if and only if its density operator is
equal to P' for some ' 2 H.

(That k'k = 1 follows from the properties of states.)

Proof. The density operator ⇢ of the state is hermitian and it can be written
as

⇢ =
nX

i=1

�iP'i
, (3.9)

where the 'is form an orthonormal basis of eigenvectors. This can be viewed as
a convex combination of density operators. This shows that if ⇢ is not equal to a
projector, then the corresponding state is mixed.

It remains to show that if ⇢ = P' is a projector, then the state is pure. Assume
that h·i = th·i1 +(1�t)h·i2 with t 2 (0, 1). By Proposition 3.1, there exist density
matrices ⇢1, ⇢2 such that h·ii = Tr ⇢i· for i = 1, 2. Then

P' = t⇢1 + (1 � t)⇢2. (3.10)

We have

1 = Tr ⇢ = Tr P' = Tr P 2

'
= Tr P'

�
t⇢1 + (1 � t)⇢2

�

= th', ⇢1'i + (1 � t)h', ⇢2'i  t + (1 � t) = 1.
(3.11)

In the last inequality we used that for any density matrix ⇢ and any vector ', we
have that h', ⇢'i  k'k

2 as can easily be checked. Equality holds here only if
⇢ is the projector onto the subspace spanned by '. Since equality must hold for
both ⇢1 and ⇢2 in (3.11), we conclude that ⇢1 = ⇢2 = P' = ⇢ as claimed. ⇤

3.2. Gibbs states in Hilbert spaces

We now discuss equilibrium (or Gibbs) states in the context of a Hilbert
space H. The main example is H = H⇤. Let H = H⇤

2 B(H) be a Hermitian
operator, which we call a Hamiltonian. Since it is Hermitian, H has only real
eigenvalues. For � � 0, we define the Gibbs state with Hamiltonian H (at
inverse temperature �) as the state h·iH,� with density matrix

⇢ =
1

Z�

e��H , Z� = Tr e��H . (3.12)
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Explicitly,

hAiH,� =
1

Z�

Tr A e��H . (3.13)

The normalizing factor Z� is called the partition function. The Gibbs state
arises through the following four characterizations. Each of the four character-
izations carries over to infinite systems, with suitable adjustements, as will be
discussed in later sections.

Proposition 3.3. The Gibbs state h·iH,� is the unique state h·i = Tr · ⇢
satisfying any of the following four conditions:

(a) Tangent condition: Let F�(H) := �
1

�
Tr e��H . Then F�(H +

A)  F�(A) + hAi for all A = A⇤
2 B(H).

(b) Gibbs variational principle: The density matrix ⇢ minimizes the
function F�(⇢) := Tr H⇢+ 1

�
Tr ⇢ log ⇢.

(c) KMS condition: Define the time evolution

↵t(A) = eitH A e�itH , t 2 C. (3.14)

Then hABi =
⌦
B ↵i�(A)

↵
for all A, B 2 B(H).

(d) RAS condition: For all A 2 B(H) such that hAA⇤
i > 0,

hA⇤[H, A]i �
1

�
hA⇤Ai log

hA⇤Ai

hAA⇤i
(3.15)

We now make some remarks on each of these conditions.
The first two conditions are common also in classical statistical mechanics,

while the last two are mainly encountered for quantum systems.
In the tangent condition, note that F�(·) is a concave function: F�(✓H +(1�

✓)K) � ✓F�(H) + (1 � ✓)F�(K) for ✓ 2 [0, 1]. The condition may be interpreted
geometrically as saying that h·i defines a supporting hyperplane at H.

In the variational principle, the expression to be minimized may be written
as U �TS where U = Tr H⇢ is the energy and S = �Tr ⇢ log ⇢ the entropy in the
state ⇢ (and T = 1

�
is the temperature). This form is common in thermodynamics.

The condition also extends naturally to the ground state (zero temperature)
case � = 1, where the problem becomes to minimize Tr H⇢. It is not hard to see
that this is achieved by any density matrix ⇢ which is restricted to the eigenspace
for H with lowest eigenvalue. We can write this as ⇢  PE0 where PE0 is the
projector onto the latter eigenspace.

In the KMS condition (named after Kubo, Martin and Schwinger) the evo-
lution operators ↵t, t 2 R, are related to the Heisenberg framework of quantum
mechanics. Note that we need to allow complex values of the ‘time’ parameter t.

Finally, the RAS condition (named after Roepstor↵, Araki and Sewell) also
extends straightforwardly to the ground state � = 1, where the condition be-
comes hA⇤[H, A]i � 0. The intuition becomes clearer if we take h·i to be a pure
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state with density matrix ⇢ = |�ih�| with |�i a unit eigenvector for H satisfying
H|�i = e|�i. The condition becomes

e 
hA�|H|A�i

hA�|A�i
.

In the right-hand-side, |A�i is a perturbation of |�i, and the condition says that
the average energy in the pure state associated with |A�i is higher than in the
state associated with |�i.

We prove part (c) of Proposition 3.3 here, leaving the other parts for the
exercises.

Proof of Proposition 3.3(c). If ⇢ = e��H /Z�, then using the cyclicity
of the trace

⌦
AB

↵
=

1

Z�

Tr e��H AB =
1

Z�

Tr B e��H A =
1

Z�

Tr e��H B( e��H A e�H )

= hB↵i�(A)i.
(3.16)

So the Gibbs state is indeed a solution.
Next, let ⇢ be the density matrix of a state that satisfies the KMS condition.

We have for all A, B 2 B(H),

Tr (⇢A)B = Tr ⇢B( e��H A e�H ) = Tr ( e��H A e�H ⇢)B. (3.17)

Since this holds for all B 2 B(H) (including B = |iihj| for an orthonormal basis),
we have that

⇢A = e��H A e�H ⇢ (3.18)

for all A 2 B(H). Choosing A = e�H we get e�H ⇢ = ⇢ e�H , so ⇢ commutes with
e�H . Now observe that (3.18) implies that ⇢ e�H commutes with all A 2 B(H).
Then ⇢ e�H is proportional to the identity and ⇢ must be equal to the Gibbs
operator. ⇤

3.3. Infinite volume Gibbs states

The goal of statistical mechanics is to describe the “bulk properties” of the
system, far away from its boundaries. The large system is approximated by an
infinite regular graph, the “lattice”. For simplicity we consider Zd, although all
of the setting and many of the properties hold more generally. For an infinite
system one cannot define equilibrium states using a density matrix, instead we
proceed using appropriate analogs of the properties in Proposition 3.3 to define
them. To prepare for this, we need some definitions.

At each site x 2 Zd is associated a Hilbert space Hx. We write n = dim Hx,
which we assume to be finite and independent of x. For X b Zd we let HX =
⌦x2XHx and we let AX = B(HX) denote the algebra of bounded linear operators
on HX . We consider two norms on AX . First, the usual operator norm kAk =
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sup
'2HX

kA'k/k'k. Second, the Hilbert-Schmidt norm kAk2 =
p

tr A⇤A, where
tr denotes the normalised trace

tr A =
1

dim HX

Tr A =
1

n|X|
Tr A. (3.19)

If X ⇢ Y b Zd, there is a natural injection ◆ : AX ! AY defined by

◆A = A ⌦ 1lY \X . (3.20)

Notice that k◆Ak = kAk (Exercise 3.2) and k◆Ak2 = kAk2 (because of the nor-
malised trace). Then we can view AX as a subalgebra of AY . We define the
algebra of local observables as the inductive union

Aloc =
_

XbZd

AX . (3.21)

If A 2 Aloc, then there exists X b Zd such that A 2 AX . Finally, we let A denote
the completion of Aloc with respect to the operator norm; this is the algebra of
quasi-local observables. We also let Ah denote the algebra of hermitian
quasi-local operators.

From the definition of A above we see that a local operator can be represented
by several distinct elements, since A 2 AX has a counterpart ◆(A) 2 AY for all
Y � X. If we define a map ↵ on operators A 2 AX , simultaneously for all
X b Zd, we need to check that it is consistent, namely that ↵(A) = ↵(◆(A)).

We denote by ⌧x the lattice translation by x 2 Zd. The action of ⌧x is intuitive
but let us define it formally. First we view ⌧x as a linear map between HX and
HX+x for any X b Zd such that

⌧x ⌦y2X 'y = ⌦y2X'y+x (3.22)

for any set of vectors ('y) in H0. This extends by linearity to all vectors of HX .
Notice that ⌧�1

x
= ⌧�x. Then we define ⌧̃x as the linear map AX ! AX+x whose

action on the local observable A 2 AX is

(⌧̃xA)' = ⌧xA(⌧�1

x
'), 8' 2 HX+x. (3.23)

We dismiss the tilde from now on and we write ⌧x for translations of vectors and
of operators. Notice that for any A 2 AX�x and B 2 AX we have

(⌧xA)B = ⌧x(A(⌧�1

x
B)), (3.24)

indeed for ' 2 HX

[⌧x(A(⌧�1

x
B))]' = ⌧xA(⌧�1

x
B)⌧�1

x
' = ⌧xA⌧

�1

x
B(⌧x⌧

�1

x
') = [(⌧xA)B]'. (3.25)

An interaction is a collection of local self-adjoint observables indexed by
finite subsets, � = (�X)XbZd . We only consider translation-invariant interactions,
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i.e. we assume that �X+x = ⌧x�X for all X b Zd and all x 2 Zd. Interactions
form a (real) linear space and we consider the following norms:

|||�||| =
X

X30

k�Xk

|X|
,

k�kr =
X

X30

er|X|
k�Xk for r � 0.

(3.26)

We denote by I and Ir the corresponding Banach spaces of interactions.
The Hamiltonian in a finite domain ⇤ b Zd is

H�

⇤
=

X

X✓⇤

�X . (3.27)

In the finite domain ⇤ b Zd the Gibbs state for the interaction �, at inverse
temperature �, is defined as before: it is the linear functional h·i

�

⇤,�
: A⇤ ! C

given by

hAi
�

⇤�
=

1

Z⇤,�(�)
Tr A e��H

�
⇤ , (3.28)

where Z⇤,�(�) = Tr e��H
�
⇤ .

We want to extend this notion to the infinite lattice Zd. There is no Hamil-
tonian on the infinite lattice. In fact, we also avoid the Hilbert space for Zd since
it would be an infinite tensor product and would not be separable; this would
cause many pathologies. The way out is to extend the linear functionals from A⇤

to A, the space of quasi-local observables.

Definition 3.4. A state h·i is a normalised, positive linear functional
on A. That is, h·i satisfies

(i) hsA + tBi = shAi + thBi for all A, B 2 A and s, t 2 C.
(ii) h1li = 1.
(iii) hA⇤Ai � 0 for all A 2 A.

We write E for the set of states. A state is called translation-invariant

if hAi = h⌧xAi for all x 2 Zd.

All states have norm 1 (Exercise 3.2).
In the following subsections, we summarize the definitions for equilibrium

states in Zd, and how they are related.

3.3.1. Gibbs states as cluster points. The first notion of infinite-volume
Gibbs states is to simply define them as limits of finite-volume Gibbs states. By
the Banach–Alaoglu theorem the set of states is compact in the weak-* topology
(that is, the topology of pointwise convergence of linear functionals). In plain
words, this means that from any sequence of states (h·in), we can extract a
subsequence (nk) such that hAink

converges for any A 2 A.
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Definition 3.5 (State as cluster point). Let � 2 I, and let  n be a
sequence of interactions in I such that ||| n||| ! 0 as n ! 1. Let ⇤n =
{�n, . . . , n}

d and for A 2 Aloc, let

hAi
�

⇤n,�
=

1

Z⇤n,�(�+ n)
Tr A e��H

�+ n

⇤n .

The cluster points of the sequence (h·i�
⇤n,�

)n�1 are infinite-volume Gibbs
states for the interaction �.

While useful in many concrete situations, the set of cluster-points lacks rele-
vant mathematical properties. For this reason, we consider four other definitions
which are analogs of the properties in Proposition 3.3. Due to lack of time and
space, many proofs are omitted.

3.3.2. Gibbs states as tangent functionals. The finite-volume free en-

ergy in the domain ⇤ b Zd is defined as the following function of interactions:

f⇤(�, �) = �
1

�|⇤|
log Tr e��H

�
⇤ +

1

�|⇤|
log dim H⇤. (3.29)

(We have added the term 1

�|⇤|
log dim H⇤ so that we have

f⇤(�, �) = �
1

�|⇤|
log tr e��H

�
⇤ , (3.30)

where we instead use the normalized trace tr (3.19). This is convenient for the
connection to the variational principle.) The following property is important and
follows from the Golden–Thompson and Hölder inequalities.

Proposition 3.6. The free energy f⇤ is a concave function of the inter-
actions.

Definition 3.7. A sequence of finite domains (⇤n)n�1 converges to Zd
in

the sense of van Hove if

(i) it is increasing: ⇤n+1 � ⇤n for all n;
(ii) it invades Zd: [n�1⇤n = Zd;
(iii) the ratio boundary/bulk vanishes: |@r⇤n|

|⇤n|
! 0 as n ! 1, 8 r.

Here, the r-boundary is @r⇤ = {x 2 ⇤c : dist(x,⇤)  r}.

We now state (without proof) one of the major results in statistical mechanics,
namely the existence of the infinite volume free energy.
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Theorem 3.8. Assume that � 2 I, i.e. |||�||| < 1. Then the limit

f(�, �) := lim
n!1

f⇤n
(�, �)

exists and is the same along all van Hove sequences ⇤n * Zd. It is a
concave function of the interactions.

We use the infinite-volume free energy to define infinite-volume states. The
definition is restricted to translation-invariant states. Let us introduce

A =
X

X30

1

|X|
 X . (3.31)

Notice that kA k  ||| |||.

Definition 3.9 (States as tangent functionals). A translation-invariant
state h·i on A is an equilibrium state for the interaction �, in the sense
of tangent functionals to the free energy, if

f(�+ )  f(�) + hA i

for all  2 I.

To motivate the use of A , note from Proposition 3.3 that h·i = h·i
�

⇤,�
satisfies

f⇤(�+ , �)  f⇤(�, �) + h
1

|⇤|
H 

⇤
i. (3.32)

For a translation-invariant state h·i we have h
1

|⇤|
H 

⇤
i = hA i.

We denote by G
�

t.i.
the set of translation invariant states on A that are tangent

to the free energy at � in the sense that they satisfy Definition 3.9. This definition
is more general than that of states as cluster points:

Proposition 3.10. Any translation-invariant cluster state for � (Defini-
tion 3.5) is tangent to the free energy at � (i.e. satisfies Definition 3.9).

3.3.3. The variational definition of Gibbs states. We now introduce
the entropy of states on the quasi-local observables A. This is a function on
finite subsets of Zd, that are defined using the von Neumann entropy of the
corresponding density matrices.

Recall that we defined the von Neumann entropy S(⇢) of a density matrix ⇢ by
S(⇢) = �Tr ⇢ log ⇢. If (�i)i�1 are the eigenvalues of ⇢, then S(⇢) = �

P
i
�i log �i.

The formula also applies when some eigenvalues are 0, using 0 log 0 = 0, and it
applies to all positive semi-definite matrices, not only density matrices.

Since we consider sequences ⇤ b Zd, it is important to note that the trace
Tr actually depends on ⇤, so we write here Tr ⇤. For example, the trace of the
identity operator 1l depends on which H⇤ we view it as acting on: Tr ⇤1l = dim H⇤.
For this reason, we instead use the normalized trace tr = 1

dim H⇤
Tr ⇤, introduced
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in (3.19). Then for A 2 Aloc, the trace tr A does not depend on which H⇤ we
view it as acting on. With respect to the normalized trace, a density matrix is
positive semi-definite and satisfies tr ⇢ = 1, so (if ⇢ 2 A⇤) Tr ⇤⇢ = dim H⇤.

For notational convenience, here we write ⇢ rather than h·i for states. Let ⇢
be a state on A. For ⇤ b Zd, we let ⇢⇤ be the density matrix (with respect to
normalized trace) of the restriction of ⇢ to A⇤. We define the entropy in ⇤ b Zd

to be

s⇤(⇢) := �tr ⇢⇤ log ⇢⇤. (3.33)

Note that s⇤(⇢) = S⇤
�

1

dim H⇤
⇢⇤

�
� log(dim H⇤), where S⇤(A) = �Tr ⇤A log A

is the usual von Neumann entropy in A⇤ and 1

dim H⇤
⇢⇤ is a density matrix with

respect to Tr ⇤.
For a translation-invariant state ⇢ we can define the infinite-volume mean (or

specific) entropy by

s(⇢) = lim
⇤*Zd

1

|⇤|
s⇤(⇢). (3.34)

Proposition 3.11. Let ⇢ be a translation-invariant state on A.

(a) The limit (3.34) exists along any van Hove sequence of domains
and is the same along all such sequences.

(b) The functional s is a�ne: s(t⇢+(1� t)⇢0) = ts(⇢)+(1� t)s(⇢0).

Let ⇢ be a translation-invariant state on A. We define the infinite-volume

free energy functional by

f�,�(⇢) = ⇢(A�) �
1

�
s(⇢), (3.35)

where A� =
P

X30

1

|X|
�X is defined in (3.31). We have that f�,�(⇢) is a�ne in

� and in ⇢.
Recall that f(�, �) = � lim⇤*Zd

1

�|⇤|
log tr ⇤ e��H

�
⇤ is the free energy density.

While f(�, �) is a function of the interaction �, the functional f�,�(⇢) depends
also on a state ⇢

Definition 3.12. Let ⇢ be a translation-invariant state on A. Then it is
called a Gibbs state for the interacton �, in the variational sense, if it is
a minimizer of f�,�(·) over all translation-invariant states.

The following result explains the connection between the free energy f(�,�)
and the free energy functional f�,�(·), and establishes the equivalence of the
definitions of Gibbs states in terms of tangent functionals and the variational
problem:
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Theorem 3.13 (Gibbs variational principle, infinite volume).

(a) The free energy is equal to the minimum of the free energy func-
tional:

f(�,�) = inf
⇢2Et.i.

f�,�(⇢).

The infimum is over all infinite-volume translation-invariant
states on A.

(b) The minimisers are Gibbs states: If ⇢ is a translation-invariant
state, then

f(�,�) = f�,�(⇢) () f(�,�+ )  f(�,�) + ⇢(A ) 8 2 I.

3.3.4. The KMS definition of Gibbs states. We now turn to the KMS
definition of equilibrium states. An advantage of this definition is that, unlike the
tangent- and variational definitions, it is not restricted to translation-invariant
states.

Given an interaction � 2 I we consider the family of evolution operators ↵�
⇤,t

,
with t 2 C and ⇤ b Zd, that acts on local operators of A⇤ as in (3.14):

↵�
⇤,t

(A) = eitH
�
⇤ A e�itH

�
⇤ . (3.36)

We now address the question of the existence of the infinite-volume limit of ↵�
⇤,t

.
We will need to consider complex times, but our strategy will be to prove the
existence for real t and then extend to complex t.

Proposition 3.14 (Infinite-volume limit of the evolution operator). As-
sume that � 2 I and t 2 R. There exists a ⇤-automorphism ↵�

t
: A ! A

such that

lim
⇤*Zd

k↵�
⇤,t

(A) � ↵�
t
(A)k = 0 for all A 2 Aloc. (3.37)

Further k↵�
t
k = 1 and ↵�

t
satisfies the group property

↵�
s+t

(A) = ↵�
s

�
↵�

t
(A)

�
for all A 2 A, s, t 2 R.

In case clarification is needed, ↵�
t

is an homomorphism in the sense that it
is linear and ↵�

t
(AB) = ↵�

t
(A)↵�

t
(B). It is an automorphism since it is also a

bijection, and a ⇤-automorphism since ↵�
t
(A)⇤ = ↵�

t
(A⇤) when t is real.

From the proof it follows that (3.37) actually holds for complex t with |Im t| <
r

2k�kr

, provided k�kr < 1 (recall (3.26)). We get a bound on the norm of

↵�
⇤,t

(A) in (3.45). We need the multicommutator (“Lie-Schwinger”) expansion.
Let adA(B) = [A, B] denote the “adjoint endomorphism”.
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Lemma 3.15 (Lie-Schwinger multicommutator expansion). Let A and B
be two operators on the same finite-dimensional Hilbert space. Then

eA B e�A =
X

n�0

1

n!
adn

A
(B).

Proof. We show that esA B e�sA and
P

n

s
n

n!
adn

A
(B) satisfy the same di↵er-

ential equation. First,

d

ds
esA B e�sA =

⇥
A, esA B e�sA

⇤
. (3.38)

Second,

d

ds

X

n�0

sn

n!
adn

A
(B) =

X

n�1

sn�1

(n � 1)!
adA

⇣
adn�1

A
(B)

⌘
=

h
A,

X

n�0

sn

n!
adn

A
(B)

i
. (3.39)

⇤
Proof of Proposition 3.14. The proof consists of the following steps.

(1) We first assume that k�kr < 1 for some r > 0. The set of such � is dense
in I.

(2) For |t| < r

2k�kr

, we then show that (↵�
⇤,t

)⇤bZd is Cauchy for each fixed A 2 Aloc.

We denote the limit ↵�
t
(A).

(3) For t 2 R, we have k↵�
⇤,t

(A)k = kAk for all ⇤, so k↵�
t
k = 1.

(4) We use the group property to extend ↵�
t

to the whole real line.

Let A 2 BY for some Y b Zd. We show that (↵�
⇤,t

(A))⇤bZd is Cauchy. By
Lemma 3.15, we have

↵�
⇤,t

(A) =
X

n�0

(it)n

n!
adn

H
�
⇤
(A)

=
X

n�0

(it)n

n!

X

X1,...,Xn⇢⇤

[�Xn
, [�Xn�1 , . . . [�X1 , A] . . . ]].

(3.40)

We show that this series converges absolutely for small |t|. In order for the
commutators to di↵er from zero, the sets must satisfy

X1 \ Y 6= ;,

X2 \ (X1 [ Y ) 6= ;,

...

Xn \ (X1 [ · · · [ Xn�1 [ Y ) 6= ;.

(3.41)

The sum over such sets can be realised by first summing over sets that contain
the origin, then by summing over translations so that (3.41) is satisfied. One
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needs to divide by the cardinality of the set in order not to over-count. Then

↵�
⇤,t

(A) =
X

n�0

(it)n

n!

X

X1,...,Xn30

✓ nY

i=1

1

|Xi|

◆

X

x1,...,xn2Zd

Xi+xi⇢⇤ 8i

[�Xn+xn
, [�Xn�1+xn�1 , . . . [�X1+x1 , A] . . . ]].

(3.42)

For given X1, . . . , Xn there are no more than

|Y | · |X1| possible choices for x1,�
|Y | + |X1|

�
· |X2| possible choices for x2,

...
�
|Y | + |X1| + · · · + |Xn�1|

�
· |Xn| possible choices for xn.

(3.43)

We get
����

X

X1,...,Xn

✓ nY

i=1

1

|Xi|

◆ X

x1,...,xn

[�Xn+xn
, . . . [�X1+x1 , A] . . . ]

����

 kAk2n
X

X1,...,Xn30

�
|X1| + · · · + |Xn| + |Y |

�n

nY

i=1

k�Xi
k

 kAk er|Y | n!
⇣2k�kr

r

⌘n

.

(3.44)

We used cn
 n!r�n erc , which is obvious from the Taylor series of erc . The factor

2n is due to the n commutators. It follows that ↵�
⇤,t

(A) is absolutely convergent
whenever |t| < r

2k�kr

if k�kr < 1. Notice the bound

k↵�
⇤,t

(A)k  kAk er|Y |

⇣
1 � |t|

2k�kr

r

⌘�1

. (3.45)

for all A 2 AY . It is uniform in ⇤ but not in Y .
If ⇤0

� ⇤, we have

↵�
⇤0,t(A) � ↵�

⇤,t
(A) =

X

n�0

(it)n

n!

X

X1,...,Xn:Y

[Xi 6⇢⇤

[�Xn
, [�Xn�1 , . . . [�X1 , A] . . . ]]. (3.46)

The second sum is over sets in ⇤0 that satisfy the constraint (3.41) and whose
union is not contained in ⇤. For small |t|, it follows from the absolute convergence
of the series that (3.46) is as small as we want by taking ⇤ large enough. Hence
(↵�
⇤,t

(A))⇤ is Cauchy, and it converges since A is complete. We define ↵�
t
(A) to

be equal to the limit. The map ↵�
t

is then easily seen to be a homomorphism.
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For t 2 R we have k↵�
⇤,t

k = 1 which extends to ↵�
t
. Since ↵�

t
is bounded

on Aloc, it is continuous and can be extended to all of A. Now assume that
k↵�

⇤,s
� ↵�

s
k ! 0 and k↵�

⇤,t
� ↵�

t
k ! 0; we define ↵�

s+t
= ↵�

s
� ↵�

t
and we have,

for all kAk = 1,

k↵�
⇤,s+t

(A) � ↵�
s+t

(A)k  k↵�
⇤,s

�
↵�
⇤,t

(A) � ↵�
t
(A)

�
k + k(↵�

⇤,s
� ↵�

s
)(↵�

t
(A))k

 k↵�
⇤,t

� ↵�
t
k + k↵�

⇤,s
� ↵�

s
k,

(3.47)

which goes to 0 as ⇤ * Zd. This allows to extend ↵�
t

to the whole real line.
Finally, if z = t + i� with |�| < r

2k�kr

, we have

↵�
⇤,t+i�

(A) = ↵�
⇤,t

�
↵�
⇤,i�

(A)
�

! ↵�
t

�
↵�

i�
(A)

�
. (3.48)

This allows to define ↵�
t+i�

= ↵�
t

� ↵�
i�

. ⇤

In order to state the KMS condition for infinite volume states, we rely on
complex analysis to extend the definition of ↵�

t
from t 2 R to t 2 C. More

precisely, we rely on an extension of complex analysis that involves maps from C
to an algebra of bounded operators. Convergent series can be defined in the same
way, so the notion of analytic functions and their extensions still makes sense.

Consider a function f 2 C1

c
(R), the space of smooth functions R ! C with

compact support, and set

bf(z) =
1

p
2⇡

Z

R
ei⇠z f(⇠)d⇠, z 2 C. (3.49)

Then bf is analytic in the whole complex plane (it is “entire”). Given A 2 A and
f 2 C1

c
(R), let

Af =

Z

R
bf(t)↵�

t
(A)dt. (3.50)

Then Ã = {Af : A 2 A, f 2 C1

c
(R)} is a dense subspace of A (sometimes called

Paley–Wiener operators). For Af 2 Ã and z 2 C we define

↵�
z
(Af ) :=

Z

R
bf(t � z)↵�

t
(A)dt. (3.51)

Thus ↵�
z
(Af ) = Afz

2 Ã, where fz 2 C1

c
(R) is the function given by fz(t) =

e�izt f(t). Note that (fz)w = fz+w. To summarize:

Proposition 3.16. With the definition (3.51), ↵�
z

maps Ã to Ã and
satisfies the group property ↵�

z
� ↵�

w
= ↵�

z+w
for all z, w 2 C.
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Definition 3.17. We say that the state h·i on A satisfies the KMS

condition for the interaction � 2 I at inverse temperature � if for all
A 2 Ã and all B 2 A, we have

hABi = hB↵�
i�

(A)i. (3.52)

Equivalently, we have for all A, B 2 A, and all functions f such that
bf 2 C1

c
, that

Z

R
f(t)h↵�

t
(A)Bidt =

Z

R
f(t � i�)hB ↵�

t
(A)idt. (3.53)

We write G
�

�
for the set of states satisfying the KMS-condition for � at inverse

temperature �. Notice that the states h·i 2 G
�

�
are not assumed to be translation-

invariant (even though the interaction � is). For translation-invariant states, the
three definitions agree:

Proposition 3.18. Let h·i be a translation-invariant state on A. Then
h·i satisfies the KMS-condition if and only if it satisfies the tangent- and
variational definitions.

Let S� denote the strip S = {z 2 C : 0  Im z  �} in the complex plane.
Another common formulation of the KMS condition is the following:

Proposition 3.19. A state h·i is a KMS state on A if and only if for each
A, B 2 A there is a continuous, bounded function F = FA,B : S� ! C
that is analytic in the interior of the strip S� and satisfies for all t 2 R
that

hA↵�
t
(B)i = F (t), h↵�

t
(B)Ai = F (t + i�).

Proof. First assume that h·i is a KMS state. If A 2 A and Bf 2 Ã, set
FA,Bf

(z) = hA↵�
z
(Bf )i. Then FA,Bf

(z) is indeed analytic (indeed, entire) and it
satisfies the first identity by definition. As for the second identity, we have using
(3.53) and the group property:

FA,Bf
(t + i�) = hA↵�

t+i�
(Bf )i =

Z

R
f(s � t � i�)hA↵�

s
(B)ids

=

Z

R
f(u � i�)hA↵�

u
(↵�

t
(B))idu =

Z

R
f(u)h↵�

u
(↵�

t
(B))Aidu

=
⌦
↵�

t

⇣Z

R
f(u)↵�

u
(B)du

⌘
A

↵
= h↵�

t
(Bf )Ai.

(3.54)

This extends to arbitrary B 2 A by continuity. Indeed, if Bfn
! B, then

↵�
t
(Bfn

) ! ↵�
t
(B) and hA↵�

t
(Bfn

)i, h↵�
t
(Bfn

)Ai converge. Further, the functions
FA,Bfn

(z) converge by the Phragmén–Lindelöf theorem.
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We now establish the other implication. If A 2 A and B 2 Ã, the function
z 7! hA↵�

z
(B)i is entire. We have hA↵�

z
(B)i = FA,B(z) for all z 2 R. The

identity is then also valid for z in the strip, so that

hA↵�
i�

(B)i = FA,B(i�) = hBAi. ⇤
3.3.5. The RAS definition of Gibbs states. Finally, the RAS-condition

extends straightforwardly from finite to infinite volume. Recall that if A 2 Aloc

then there exists ⇤ b Zd such that A 2 A⇤. Then, for any � b Zd such that
⇤ ✓ �, we have

[H�

�
, A] = [H�

⇤
, A], (3.55)

since terms in the Hamiltonian corresponding to sets X which do not intersect
⇤ commute with A. For convenience, we write simply [H�, A] for the common
value of [H�

⇤
, A] for all large enough ⇤.

Definition 3.20. A state h·i on A satisfies the RAS condition for the
interaction � 2 I and inverse temperature � if

hA⇤[H�, A]i �
1

�
hA⇤Ai log

hA⇤Ai

hAA⇤i

for all A 2 Aloc such that hAA⇤
i > 0.

Theorem 3.21. A state on A satisfies the RAS condition if and only if
it satisfies the KMS condition.

An advantage of the RAS-condition is that it gives a definition of ground-
states by taking � ! 1:

Definition 3.22. A state h·i on A is called a ground state for the
interaction � 2 I if

hA⇤[H�, A]i � 0

for all A 2 Aloc.

3.4. Extremal Gibbs states

The goal now is to understand better the structure of the set of (translation
invariant) infinite-volume Gibbs states for a given interaction. We see in this
section that it is a convex set, that extremal points enjoy special properties, and
that any Gibbs state can be written as a convex combination of extremal states.
It is remarkable that these properties can be established in a large class of systems
without identifying the actual Gibbs states.

It is easy to see that if h·i
(1), h·i(2) 2 E are two states, then the convex com-

bination th·i(1) + (1 � t)h·i(2), t 2 [0, 1], is also a state: the set E of states is
convex. It is also not hard to check that the set of equilibrium states G

�

�
and the
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set of translation-invariant states G
�

t.i.
, for a given interaction � 2 I, is convex.

Indeed, the tangent functional property, the variational principle, and the KMS
and RAS conditions are all preserved by taking convex combinations. Recall that
E ◆ G

�

�
◆ G

�

t.i.
.

Definition 3.23. An element x of a convex set X is called extremal if
it cannot be written as a convex combination tx1 + (1 � t)x2, t 2 (0, 1),
of distinct elements x1, x2 2 X . In particular, this definition applies to
elements of E, G

�

�
and G

�

t.i.
.

Another relevant property of states is to have short-range correlations.

Definition 3.24. A state h·i is said to have short-range correlations

if
lim
⇤*Zd

sup
B2A⇤c

kBk=1

��hABi � hAihBi
�� = 0.

It is said to be mixing if for all A, B 2 A we have

lim
kxk!1

�
hA⌧xBi � hAih⌧xBi

�
= 0.

Clearly short-range correlations implies mixing. For translation-invariant
Gibbs states we will see that they are actually equivalent. In the definition
of short-range correlations we may assume that the operators B are Hermitian:
if the limit is 0 when restricted to Hermitian B then, by considering B + iB0, it
follows that the limit is 0 for all B.

Finally we introduce a notion that is reminiscent of ergodic measures in dy-
namical systems, which are equal to the time averages. Here the time evolution
is replaced by space translations. We consider the averaging operator mn whose
action on A 2 A is

mn(A) =
1

nd

X

x2{1,...,n}d

⌧xA. (3.56)

For translation-invariant states we always have hmn(A)i = hAi. Notice that
mn(A) 2 A for finite n but the limit n ! 1 does not exist in general.

Definition 3.25. A translation-invariant state h·i is ergodic if

lim sup
n!1

⌦�
mn(A) � hAi

�2↵
= 0

for all A 2 A.

A pleasing aspect of the theory of translation-invariant states is that these
properties of states (extremal, short-range correlations, ergodic) are all equivalent.
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Theorem 3.26. Let h·i 2 G
�

t.i.
. The following properties are equivalent.

(a) h·i is extremal in G
�.

(b) h·i is extremal in E.
(c) h·i has short-range correlations.
(d) h·i is mixing.
(e) h·i is ergodic.

Note that we restrict to translation-invariant Gibbs states. Without translation-
invariance, the equivalence of (a), (b) and (c) should still hold.

Proof. We prove that (b) =) (a) =) (c) =) (d) =) (e) =) (b).
(b) =) (a): The contrapositive is clear; indeed, if the state can be decom-

posed in distinct states in G
�, it can also be decomposed among all states.

(a) =) (c): We show the contrapositive, namely that if h·i does not have
short-range correlations, it is not extremal in the set of KMS states.

Since h·i does not have short-range correlations, there exist quasilocal observ-
ables A and Bn, with Bn 2 A⇤c

n
where ⇤n * Zd and kBnk = 1, such that

lim inf
n!1

��hABni � hAi hBni
�� > 0. (3.57)

As pointed out above, we can assume here that the Bn are Hermitian. We
can further assume without loss of generality that A, Bn 2 Aloc, and by adding
constants and multiplying by constants we can also assume that 1

4
1l  Bn 

3

4
1l.

By extracting a subsequence, we may assume that ✓ = limn!1hBni exists.
By further extracting a diagonal subsequence (using separability) we can assume
that the following limits exist:

h·i
(1) := lim

n!1

h·Bni

hBni
= lim

n!1

h·Bni

✓

h·i
(2) := lim

n!1

h·(1l � Bn)i

1 � hBni
= lim

n!1

h·i � h·Bni

1 � ✓

(3.58)

It is not hard to verify that h·i
(1) and h·i

(2) are Gibbs states (Exercise 3.13). We
also have

h·i = ✓h·i(1) + (1 � ✓)h·i(2). (3.59)

It remains to check that these states are not all identical. With A the operator
in (3.57), we have

hAi
(1) = lim

n!1

hABni

hBni
6= hAi, (3.60)

so h·i
(1)

6= h·i.
(c) =) (d): This is obvious.
(d) =) (e): Let A 2 A. For every " > 0 there exists R such that

��hA⌧xAi � hAi
2
�� < " (3.61)
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for all kxk � R. Then

hmn(A)2
i � hAi

2 =
1

n2d

X

x,y2{1,...,n}d

�
h⌧xA⌧yAi � hAi

2
�

=
1

n2d

X

x,y2{1,...,n}
d

kx�yk<R

�
h⌧xA⌧yAi � hAi

2
�

+
1

n2d

X

x,y2{1,...,n}
d

kx�yk�R

�
h⌧xA⌧yAi � hAi

2
�
.

(3.62)

The first term is less than 2kAk
2n�d(2R)d and it vanishes in the limit n ! 1.

The second term is less than ". It follows that

lim
n!1

��hmn(A)2
i � hAi

2
��  " (3.63)

for any " > 0.
(e) =) (b): We prove the contrapositive, namely that if the state is not

extremal, it is not ergodic. If the state h·i is not extremal, it is possible to find
h·i

(1) and h·i
(2) such that h·i = 1

2
h·i

(1) + 1

2
h·i

(2) and with hAi
(1)

6= hAi
(2) for some

hermitian A 2 A. Recalling that (s + t)2 < 2s2 + 2t2 if s 6= t we have, for all n,

hAi
2 =

�
1

2
hAi

(1) + 1

2
hAi

(2)
�2

< 1

2

�
hAi

(1)
�2

+ 1

2

�
hAi

(2)
�2



⇣
1

2
hmn(A)2

i
(1) + 1

2
hmn(A)2

i
(2)

⌘
= hmn(A)2

i.
(3.64)

The second inequality holds because the variance is nonnegative:

0  h(mn(A) � hAi)2
i = h(mn(A)2

i � hAi
2. (3.65)

Taking n ! 1 in (3.64) we get

lim inf
n!1

hmn(A)2
i > hAi

2. (3.66)

Because of the strict inequality the state h·i is not ergodic. ⇤

3.5. Decomposition of states

We now show that any equilibrium state is a convex combination of extremal
states. Since G

�
⇢ A

⇤, and A
⇤ is a Banach space with the usual operator norm,

the set of Gibbs states is a metric space. It is also a measurable space with the
Borel �-algebra (the one that is generated by open sets).

Theorem 3.27. Let � 2 I and h·i 2 G
�

tr.inv
. There exists a measure µ

on G
�, that is concentrated on the extremal states of G

�, such that for all
A 2 A, we have

hAi =

Z

G�

�(A) µ(d�).

If the measure is concentrated on G
�

tr.inv.
, it is unique.
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Theorem 3.27 is based on Choquet’s theory, whose main result can be formu-
lated as follows.

Proposition 3.28 (Choquet). Let K be a metrisable compact convex set
and  2 K. Then there exists a probability measure µ on K such that

(a) µ is concentrated on the extremal points of K.
(b) For any a�ne function f : K ! R we have f() =

R
K

f(⌘)µ(d⌘).

Proof of Theorem 3.27. We can apply Choquet’s result to K = G
�. For

A 2 A we consider the a�ne function fA(�) = �(A), � 2 G
�. The existence of

the measure in Theorem 3.27 then follows immediately from Proposition 3.28.
There remains to establish uniqueness. Let h·i be a state and µ a measure on

G
�

tr.inv.
such that h·i =

R
�(·)µ(d�) and where µ is concentrated on extremal states.

We check that the µ-expectation of any continuous function depends solely on
the state. Then µ is indeed unique.

Recall the Stone–Weierstrass theorem (continuous functions can be approxi-
mated by polynomials); it is then enough to check expectations of polynomials.
Let fA1 , . . . , fAk

be functions as above, for some A1, . . . , Ak 2 A. Then, since the
measure µ is concentrated on extremal states with short-range correlations, we
have

µ(fA1 . . . fAk
) =

Z

K

�(A1) . . . �(Ak)µ(d�)

= lim
n!1

Z

K

�(mn(A1)) . . . �(mn(Ak))µ(d�)

= lim
n!1

Z

K

�
�
mn(A1) . . . mn(Ak)

�
µ(d�)

= lim
n!1

⌦
mn(A1) . . . mn(Ak)

↵
.

(3.67)

The last term does not depend explicitly on µ, but solely on the state. ⇤

Remark 3.1 (On the variational characterisation). In Theorem 3.13,
Gibbs states ⇢ are characterised as the minimisers of the free energy func-
tional f�,�(⇢). Note that the latter is an a�ne function of states. The
minimum of an a�ne function on a convex set is attained at an extreme
point. Thus, in the infimum in Theorem 3.13, we can restrict to extremal
states ⇢.
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3.6. Exercises

Here H always denotes a separable Hilbert space, possibly infinite-dimensional.

Exercise 3.1.

(a) Show that any A 2 B(H) can be written as A = B + iC where B, C 2

B(H) are Hermitian.
(b) Show that the operator norm (3.1) on B(H) satisfies kABk  kAkkBk

for all matrices A, B.

Exercise 3.2. Consider a state h·i on B(H) and A, B 2 B(H).

(a) Show that hA⇤
i = hAi.

(b) Prove the Cauchy–Schwarz inequality, |hA⇤Bi|
2

 hA⇤AihB⇤Bi.
(c) Show that |hAi|

2
 hA⇤Ai. Deduce that kh·ik = 1.

Exercise 3.3. Consider a tensor product H1⌦H2 of two Hilbert spaces. Show
that

(a) kv ⌦ wk = kvkkwk for all v 2 H1, w 2 H2

(b) kA ⌦ Bk = kAkkBk for all A 2 B(H1), B 2 B(H2).

Deduce that k◆Ak = kAk where ◆ is the injection given in (3.20).

Exercise 3.4 (Bloch sphere). Let ~� = (�(1), �(2), �(3)) denote the Pauli ma-
trices and ~a = (a1, a2, a3) a vector in R3. Consider the matrix

X = 1

2
(1l + ~a · ~�).

(a) Find the eigenvalues of X in terms of ~a and use this to determine conditions
on ~a under which X is positive definite.

(b) Show that any 2 ⇥ 2 density matrix X can be written this way.
(c) Now suppose Y = 1

2
(1l+~b ·~�). Write Tr (XY ) in terms of ~a and ~b, and using

this (or otherwise) prove the inequality

x1y2 + x2y1  Tr (XY )  x1y1 + x2y2

for arbitrary positive definite 2 ⇥ 2 matrices X, Y where x1 � x2 � 0 are the
eigenvalues of X and where y1 � y2 � 0 are the eigenvalues of Y .

Exercise 3.5. Show that A 7! hAiH,� = 1

ZH,�

Tr A e��H satisfies the definition

of states on a Hilbert space H.

Exercises 3.6, 3.7 and 3.7 establish the remaining parts of Proposition 3.3.
We let H be a Hilbert space and H = H⇤

2 B(H).

Exercise 3.6 (Tangent condition). Let F�(H) := �
1

�
Tr e��H . Show that the

Gibbs state h·iH,� is the unique state such that F�(H + A)  F�(A) + hAi for all
A = A⇤

2 B(H). You may assume the concavity of F�(·).
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Exercise 3.7 (Variational principle). Show that e��H /Tr e��H is the unique
density matrix ⇢ which minimizes the function F�(⇢) := Tr H⇢+ 1

�
Tr ⇢ log ⇢.

Exercise 3.8 (RAS condition). Show that the Gibbs state h·iH,� is the unique
state such that

hA⇤[H, A]i �
1

�
hA⇤Ai log

hA⇤Ai

hAA⇤i
(3.68)

for all A 2 B(H).
Hints: To show that the Gibbs state satisfies RAS, use the inner product

A, B 7! (A, B)s = h↵�is(A
⇤)Bi = hA⇤↵is(B)i (3.69)

(you may assume that this is an inner product) and show that the function f(s) =
(A, A)s is log-convex. For the other direction, consider the RAS-inequality for
A = 1 + tB with t small and show that H commutes with the density matrix.

Exercise 3.9. Use Proposition 3.3(b) to show that, for any translation-
invariant state ⇢,

f�,�(⇢) � f(�, �).

Exercise 3.10. Show that A 7! tr A is the unique Gibbs state at � = 0.

Exercise 3.11. Prove that a state h·i satisfies the KMS condition if and only
if hA⇤Ai = hA↵i�(A⇤)i for all A 2 Ã.

Exercise 3.12. Use Liouville’s theorem to show that if a state h·i satisfies
the KMS condition, then it is invariant under the time evolution given by ↵�

t
, i.e.

h↵�
t
(A)i = hAi for all t 2 R.

Exercise 3.13. Let h·i be a KMS state, ⇤n * Zd and let Bn 2 A⇤c
n

be
positive semidefinite operators such that the limits ✓ := limn!1hBni > 0 and
h·i

0 := limn!1h·Bni/hBni exist. Show that h·i
0 is a KMS state.

Hint: use the fact that for any local observable C we have [C, Bn] = 0 for n
large enough and check the RAS condition.

Exercise 3.14. Let h·i 2 G
�� be a Gibbs state and let U be a unitary matrix

such that for each X b Zd we have
O

x2X

U⇤

x
�X

O

x2X

Ux = �X .

Define a state h·i
0 by, for each ⇤ b Zd and each A 2 A⇤,

hAi
0 :=

D O

x2⇤

U⇤

x
A

O

x2⇤

Ux

E
.

Show that h·i
0
2 G

��.
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