
CHAPTER 6

2D systems with continuous symmetry

We consider translation-invariant Gibbs states for two-dimensional models, on
Z2, for an interaction � which is invariant under a continuous group of rotations.
We prove the absence of symmetry breaking in the sense that all infinite-volume
Gibbs states retain the continuous symmetry.

Let � = (�X : X b Z2) 2 I be an interaction such that there are Hermitian
operators Sx, x 2 Z2, with [�X ,

P
x2X

Sx] = 0 for all X b Z2. Here Sx acts
on the tensor factor associated with x 2 Z2; in most examples they are copies
of the same operator, though in principle they could be di↵erent. We assume
that the operator norms of the Sx are uniformly bounded. We also assume that
k�k8⇡+3 < 1 where k�kr =

P
X30

er|X|
k�Xk is the r-norm in (3.26), and that

�X = 0 unless X is connected (if this does not hold we can always modify � to
make it hold, however this may change the norm k�kr and in particular whether
or not k�kr < 1).

For an angle ✓ 2 [0, 2⇡] define the unitary rotation UX(✓) = exp(
P

x2X
i✓Sx).

The condition [�X ,
P

x2X
Sx] = 0 means that U⇤

X
(✓)�XUX(✓) = �X for any angle

✓, thus the interaction is invariant under rotations.
Given a state h·i 2 G

�

t.i.
we can define another Gibbs state h·i

0 by setting,
for all ⇤ b Z2 and all A 2 A⇤, hAi

0 = hU⇤

⇤
(✓)AU⇤(✓)i (see Exercise 3.14). In

this sense the set G
�

t.i.
is invariant under the symmetry of the interaction. The

following result shows that the Gibbs states are actually individually invariant
under the symmetry:

Theorem 6.1. Under the assumptions above, assume that h·i =
lim⇤n*Z2h·i

�+ n

⇤n
2 G

�

t.i.
is a limiting Gibbs state, where the interactions

 n 2 I satisfy ||| n||| ! 0. Then for all ⇤ b Z2 and all A 2 A⇤ we have
that

hU⇤

⇤
(✓)AU⇤(✓)i = hAi. (6.1)

To put Theorem 6.1 in context, consider the xxz-model (J (1) = J (2) in (1.37))
in Z2. The assumption on continuous symmetry holds, e.g. with Sx = S(3)

x
. The

model also has a discrete (spin-flip) symmetry, represented e.g. by V = ei⇡S
(1)

.
Theorem 4.4 shows that, for J (3) = � > 1 and � large enough, there exists
a Gibbs state h·i satisfying hS(3)

0
S(3)

x
i � c > 0 uniformly in all x 2 Zd. One

may in fact show that there is a translation-invariant Gibbs state h·i
+ satisfying
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80 6. 2D SYSTEMS WITH CONTINUOUS SYMMETRY

hS(3)

0
i
+ > 0. Applying the spin-flip symmetry, the state h·i

� := h⌦xV ⇤

x
· ⌦xVxi

+

is a also translation-invariant Gibbs state; it satisfies hS(3)

0
i
� = �hS(3)

0
i
+ < 0. In

particular, h·i
�

6= h·i
+. In this sense, the discrete symmetry is broken: we have

two distinct Gibbs states, related by the discrete symmetry. Theorem 6.1 shows
that the corresponding conclusion does not hold for the continuous symmetry:
the ‘rotated’ state h⌦xU⇤

x
(✓) · ⌦xUx(✓)i coincides with h·i.

The underlying reason for this di↵erence is the absence of contours. Recall
that the key method for the proof of Theorem 4.4 was to analyse the contours
separating + and � spins: the spins at 0 and at x are likely to be the same,
because if they di↵er then there is a contour separating them, and contours are
‘costly’. When there is a continuous symmetry, however, distant spins can di↵er
due to a gradual rotation as one travels from one site to the other. Indeed, the
proof of Theorem 6.1 uses this idea of gradual rotations.

Also note that this result applies to 2-dimensional systems. In higher dimen-
sions, one can use infrared bounds and results such as Theorem 4.7 to prove
breaking also of continuous symmetris.

For the proof of Theorem 6.1 we rely on the following lemma, which also plays
an important role in quantum information theory. The proof can be found in e.g.
[30].

Lemma 6.2 (Quantum Pinsker’s inequality). For two density-matrices
⇢, � 2 B(H) on a finite-dimensional Hilbert space H, define the relative
entropy

S(⇢k�) := Tr ⇢(log ⇢ � log �). (6.2)

Then S(⇢k�) �
1

2
k⇢ � �k

2

1
. In particular S(⇢k�) � 0.

Proof of Theorem 6.1. Let n large enough that ⇤n ◆ ⇤. Since the kSxk

are assumed to be uniformly bounded, we can assume kSxk  1 for all x.
The key idea of the proof is to introduce ‘gradual’ rotations and then to

transfer the rotations from the observable to the interactions. Let ✓ = (✓x)x2Z2

be angles such that (i) ✓x = ✓ for x 2 ⇤, (ii) |✓x|  ✓ for all x 2 Z2, and ✓x = 0
for kxk1 > m. Our precise choice of angles is given below in (6.25). Define

V (✓) = exp
�
i
P

x2⇤n
✓xSx

�
. (6.3)

Note that U⇤

⇤
(✓)AU⇤(✓) = V ⇤(✓)AV (✓) since A 2 A⇤. In what follows we simply

write V for V (✓) to lighten the notation.
Let us write Z�+ n

⇤n
= Tr e�H

�
�H

 n and

⇢⇤n
=

e�H
�
⇤n

�H
 n

⇤n

Z�+ n

n

(6.4)
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for the density-matrix associated with the finite-volume Gibbs-state h·i
�+ n

⇤n
. Let

us also write

⇢V

⇤n
=

e�V H
�
⇤n

V
⇤
�V H

 n

⇤n
V

⇤

Z�+ n

n

(6.5)

for the density-matrix associated with hV ⇤
·V i

�+ n

⇤n
. (The partition-functions are

the same as the trace is invariant under conjugation.) We have that

|hAi
�+ n

⇤n
�hU⇤

⇤
(✓)AU⇤(✓)i

�+ n

⇤n
| = |hAi

�+ n

⇤n
�hV ⇤AV i

�+ n

⇤n
| = |Tr A(⇢⇤n

� ⇢V

⇤n
)|

(6.6)

Applying first Hölder’s inequality followed by Pinsker’s inequality we find that

|Tr A(⇢⇤n
� ⇢V

⇤n
)|  kAk1k⇢⇤n

� ⇢V

⇤n
k1  kAk1

q
2S(⇢⇤n

| ⇢V

⇤n
). (6.7)

Now we apply a strange-looking trick which turns out to be crucial. By the
non-negativity of the relative entropy,

S(⇢⇤n
| ⇢V

⇤n
)  S(⇢⇤n

| ⇢V

⇤n
) + S(⇢⇤n

| ⇢V
⇤

⇤n
) (6.8)

where ⇢V
⇤

⇤n
is the density-matrix as in (6.5) but with V ⇤ replacing V , or equiva-

lently, with rotations �✓x replacing ✓x. The reason for doing this is that it leads
to a cancellation of terms which are linear in the angle di↵erences ✓x �✓y, leaving
only second-order terms.

Now note that

S(⇢⇤n
| ⇢V

⇤n
) + S(⇢⇤n

| ⇢V
�1

⇤n
) =

⌦
� 2H�

⇤n
+ HV

⇤
�V

⇤n
+ HV �V

⇤

⇤n

↵�+ n

⇤n

+
⌦

� 2H n

⇤n
+ HV

⇤
 nV

⇤n
+ HV nV

⇤

⇤n

↵�+ n

⇤n

.
(6.9)

The absolute value of the right side is bounded above by

k2H�

⇤n
� HV

⇤
�V

⇤n
� HV �V

⇤

⇤n
k + k2H n

⇤n
� HV

⇤
 nV

⇤n
� HV nV

⇤

⇤n
k. (6.10)

Since we assumed that ✓x = 0 when kxk1 > m, we have V ⇤( n)XV = ( n)X

whenever all sites of X are at distance more than m from the origin. Thus

k2H n

⇤n
�HV

⇤
 nV

⇤n
�HV nV

⇤

⇤n
k  4

���
X

x:kxk1m

X

X✓⇤n

X3x

( n)X

���  4(2m+1)2
||| n|||. (6.11)

For fixed m, this goes to 0 as n ! 1. We now check that the first term is as
small as we wish by taking m large.

For each set X ✓ ⇤n, we fix x0(X) to be one of its elements. We have

V ⇤�XV = e�iTX �X eiTX , (6.12)

where
TX = TX(✓) =

X

x2X

(✓x � ✓x0)Sx. (6.13)

The term with x0 commutes with �X and actually cancels; however, we include
it to help with later estimates.
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Recall the Lie–Schwinger multicommutator expansion, Lemma 3.15: eA B e�A =P
j�0

1

j!
adj

A
(B) where adA(·) = [A, ·]. Using this we get

HV
⇤
�V

⇤n
=

X

X✓⇤n

�X +
X

j�1

X

X✓⇤n

(�i)j

j!
adj

TX(✓)
(�X)

= H�

⇤
+ B(✓) + C(✓),

(6.14)

where

B(✓) =
X

j�0

X

X✓⇤n

i

(2j + 1)!
ad2j+1

TX(✓)
(�X), (6.15)

and

C(✓) = �

X

j�1

X

X✓⇤n

1

(2j)!
ad2j

TX(✓)
(�X). (6.16)

Similarly

HV �V
⇤

⇤n
= H�

⇤
+ B(�✓) + C(�✓). (6.17)

Note that TX(�✓) = �TX(✓) and ad(�TX)(·) = �adTX
(·). This means that

B(�✓) = �B(✓) and C(�✓) = C(✓). Thus

2H�

⇤n
� HV

⇤
�V

⇤n
� HV �V

⇤

⇤n
= 2C(✓). (6.18)

We now estimate kC(✓)k. Using k[A, B]k  2kAk kBk we obtain

kC(✓)k 

X

j�1

X

X✓⇤

22j

(2j)!
kTXk

2j
k�Xk

=
X

X✓⇤

k�Xk
�
cosh (2kTXk) � 1

�

 2
X

X✓⇤n

k�XkkTXk
2 e2kTXk .

(6.19)

We used the inequality cosh u � 1 
1

2
u2 eu , which is easily verified for all u � 0.

We now bound kTXk. Since we assumed kSxk  1 for all x, we have

kTXk 

X

x2X

|✓x � ✓x0 |. (6.20)

Since we have |✓x|  |✓| for all x, a first upper bound is kTXk  2|✓|. We use this
for the last factor in (6.19): e2kTXk

 e4|✓||X| . Another bound, which allows us
to exploit a gradual change in the angles ✓x, is based on:

|✓x � ✓x0 |  |✓x0 � ✓x1 | + |✓x1 � ✓x2 | + · · · + |✓xk�1
� ✓x| (6.21)

where x0, x1, x2, . . . , xk�1, xk = x is a sequence of nearest-neighbour sites in X
forming a (non-repeating) path from x0 to x (this is where we use that X is
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assumed to be connected). This gives

kTXk  |X|

X

{x,y}✓X

kx�yk=1

|✓x � ✓y|, (6.22)

where we used that a given edge is traversed at most X times. We now combine
this with Cauchy–Schwarz:

kTXk
2

 |X|
2

⇣ X

{x,y}✓X

kx�yk=1

|✓x � ✓y|

⌘2

 2|X|
3

X

{x,y}✓X

kx�yk=1

|✓x � ✓y|
2

(6.23)

where we used that X contains at most 2|X| edges. We obtain

kC(✓)k  4
X

X✓⇤n

k�Xk|X|
3 e4|✓||X|

X

{x,y}✓Z

kx�yk=1

|✓x � ✓y|
2

 4
X

{x,y}✓⇤n

kx�yk=1

|✓x � ✓y|
2

X

X◆{x,y}

k�Xk|X|
3 e4|✓||X|

 8k�k4|✓|+3

X

{x,y}✓⇤n

kx�yk=1

|✓x � ✓y|
2.

(6.24)

We used x  ex . Note that k�k4|✓|+3  k�k8⇡+3 < 1.
We now choose the angles ✓ = (✓x). Let m0 be large enough so that all sites

in ⇤ are at distance at most m0 from the origin. Then we take

✓x =

8
><

>:

✓ if kxk1  m0,

✓(1 �
log(kxk1�m0)

log m
) if m0 < kxk1 < m0 + m,

0 if kxk1 � m.

(6.25)

We can then bound

X

{x,y}✓⇤n

kx�yk=1

|✓x � ✓y|
2 =

nX

r=0

X

x:kxk1=r

X

y:kyk1=r+1

|✓x � ✓y|
2



mX

r=m0

4 · 8r✓2

⇣ log(r + 1) � log r

log m

⌘2


const

(log m)2

mX

r=1

r(log(1 + 1

r
))2


const

log m
.

(6.26)

Using our bound in (6.24), (6.18) and then (6.10), we see that the di↵erence of
the expectation of the local observable A in (6.6) is vanishingly small. ⇤
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