KMS condition. Extremal state decomposition

Recall: Finite volume Gibbs state: (A) = 1 TreBHA

PROPOSITION 3.3. The Gibbs state $\langle \cdot \rangle_{H,\beta}$ is the unique state $\langle \cdot \rangle = \text{Tr } \cdot \rho$ satisfying any of the following four conditions:

(a) Tangent condition: Let $F_{\beta}(H) := -\frac{1}{\beta} \log \operatorname{Tr} e^{-\beta H}$. Then

$$F_{\beta}(H+A) \le F_{\beta}(H) + \langle A \rangle$$

for all $A = A^* \in \mathcal{B}(\mathcal{H})$.

(b) Gibbs variational principle: The density matrix ρ minimizes the function

$$\mathcal{F}_{\beta}(\rho) := \operatorname{Tr} H \rho + \frac{1}{\beta} \operatorname{Tr} \rho \log \rho.$$

(c) KMS condition: Define the time evolution

$$\alpha_t(A) = e^{itH} A e^{-itH}, \qquad t \in \mathbb{C}.$$
 (3.11)

Then

$$\langle AB \rangle = \langle B \, \alpha_{i\beta}(A) \rangle$$

for all $A, B \in \mathcal{B}(\mathcal{H})$.

(d) RAS condition: For all $A \in \mathcal{B}(\mathcal{H})$ such that $\langle AA^* \rangle > 0$,

$$\langle A^*[H,A] \rangle \ge \frac{1}{\beta} \langle A^*A \rangle \log \frac{\langle A^*A \rangle}{\langle AA^* \rangle}$$
 (3.12)

Infinite-volume setting

We consider states on A.

Interaction:
$$(\Phi_X)_{X \in \mathbb{Z}^d}$$
 (here: always translation-invariant)

Norms:
$$\| \Phi \| = \sum_{X \ni 0} \frac{1}{|X|} \| \Phi_X \|$$
 (if $\| \Phi \| < \infty$, $\Phi \in I$)

$$\|\phi\|_{r} = \sum_{x \geq 0} e^{r|x|} \|\phi_{x}\| \quad (\text{if } \|\phi\|_{r} \iff \phi \in I_{r})$$

Back to Finite-volume KMS condition

For
$$\Lambda \in \mathbb{Z}^d$$
: hamiltonian $H_{\Lambda}^{\phi} = \sum_{x \in \Lambda} \Phi_x$

Evolution operator
$$\alpha_{\Lambda,F}^{\dagger}(A) = e^{ifH_{\Lambda}^{\dagger}}A = ifH_{\Lambda}^{\dagger}$$

The (Finite-vol.) KMS condition:

$$\langle AB \rangle = \langle B \alpha_{\Lambda,iB}^{\phi}(A) \rangle \quad \forall A,B \in \mathcal{A}_{\Lambda}$$

Method: Extend ont to A.

Infinite-volume of evolution operator

LEMMA 3.15. Assume that $\Phi \in \mathcal{I}_r$ for some r > 0 and that $t \in \mathbb{C}$ with $|t| < \frac{r}{2\|\Phi\|_r}$. Then $(\alpha_{\Lambda,t}^{\Phi(A)})_{\Lambda \in \mathbb{Z}^d}$ is a Cauchy sequence for each fixed $A \in \mathcal{A}_{loc}$.

Further, we found that

$$\| x + (A) \| \le \|A\| e^{-|Y|} (1 - |H| \frac{2\|\Phi\|_r}{r})^{-1}$$
 $\forall A \in A_Y$. Here, $f \in C$.

We can define
$$\alpha_{t}^{\phi}$$
 on A_{loc} by
$$\alpha_{t}^{\phi}(A) = \lim_{\Lambda \uparrow \mathbb{Z}^{d}} \alpha_{\Lambda,t}^{\phi}(A) \quad |H| \leq \frac{r}{2\|\phi\|_{r}}$$

We need Xis, with Barbitrary large.

Infinite-volume of evolution operator

Theorem 3.17 (Infinite-volume limit of the evolution operator).

Let $\Phi \in \mathcal{I}_r$ for some r > 0. There exists a family of *-automorphisms α_t^{Φ} on \mathcal{A} such that

- (a) $\lim_{n\to\infty} \alpha_{\Lambda_n,t}^{\Phi}(A) = \alpha_t^{\Phi}(A)$ along any sequence $\Lambda_n \uparrow \mathbb{Z}^d$, for any $t \in \mathbb{R}$, and for any $A \in \mathcal{A}_{loc}$.
- (b) $\|\alpha_t^{\Phi}\| = 1$ for any $t \in \mathbb{R}$.
- (c) It satisfies the group property

$$\alpha_{s+t}^{\Phi}(A) = \alpha_s^{\Phi}(\alpha_t^{\Phi}(A))$$
 for all $A \in \mathcal{A}, s, t \in \mathbb{R}$.

Proof: Extend on to A:

$$A = \underset{\mathcal{A}_{\Lambda}}{\beta} \otimes \underset{\mathcal{A}_{\Lambda^{c}}}{C} : \qquad \alpha_{\Lambda,t}^{\Phi}(A) = e^{itH_{\Lambda}^{\Phi}} B e^{-itH_{\Lambda}^{\Phi}} \otimes C.$$

Note that $\| x_{\Lambda, \Gamma}^{\Phi} \| = 1$, so the definition extends to A.

For small
$$f: \alpha_{+}^{\varphi}(A) = \lim_{\Lambda \cap \mathbb{Z}^d} \alpha_{\Lambda,+}^{\varphi}(A)$$
, $A \in \mathcal{R}_{loc}$

$$\frac{k}{\sum_{i=1}^{k} k_{i}} = k_{i}, \qquad |k_{i}| < \frac{r}{2\|\Phi\|_{r}}, \quad |k_{i}| < \frac{r}{2\|\Phi\|_{$$

We have

$$\alpha_{\Lambda,t_k}^{\Phi} \circ \dots \alpha_{\Lambda,t_1}^{\Phi}(A) - \alpha_{t_k}^{\Phi} \circ \dots \alpha_{t_1}^{\Phi}(A) = \sum_{j=1}^k \alpha_{\Lambda,t_k}^{\Phi} \circ \dots \left(\alpha_{\Lambda,t_j}^{\Phi} - \alpha_{t_j}^{\Phi}\right) \circ \dots \alpha_{t_1}^{\Phi}(A).$$

Then

$$\left\|\alpha_{\Lambda,t_k}^{\Phi} \circ \ldots \alpha_{\Lambda,t_1}^{\Phi}(A) - \alpha_{t_k}^{\Phi} \circ \ldots \alpha_{t_1}^{\Phi}(A)\right\| \leq \sum_{j=1}^{k} \left\|\alpha_{\Lambda,t_j}^{\Phi} - \alpha_{t_j}^{\Phi}\right\| \|A\|.$$

Then •
$$\alpha_{\Lambda,t} = \alpha_{\Lambda,t_{k}} \circ ... \circ \alpha_{\Lambda,t_{i}}$$
 converges as $\Lambda \cap \mathbb{Z}^{d}$

· Group property:
$$\alpha_{s+t} = \alpha_s \circ \alpha_t$$
.

The space A of quasi-local operators

Whe have of For te R. Whe need ois, BER.

Given FE Cc (R), define the complex Function

 $\hat{F}(z) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\frac{z}{2}z} F(\xi) d\xi, z \in \mathbb{C}.$

If AEA, let

$$A_F = \int_{\mathbb{R}} \hat{F}(h) \, \alpha_F^{\Phi}(A) \, dh$$

As is a "Paley-Wiener" operator. Then As E A.

Note that A is dense in A.

In 2 | C (A) d' (A) d' (A) d' (A) d' (A) d'

For AFER we define

 $\alpha_z^{\diamond}(A_{\xi}) = \int_{\mathbb{R}} \hat{\xi}(t_{-z}) \alpha_t^{\diamond}(A) dt$

Mote: $\hat{f}(t-z) = \hat{f}_{z}(t)$ where $f_{z}(t) = e^{-izt} f(t) \in C_{c}$.

Then $d_z(A_F) = A_{F_z}$

and α_z^{ϕ} is a linear map $\widetilde{A} \rightarrow \widetilde{A}$.

PROPOSITION 3.18. With the definition (3.56), α_z^{Φ} maps $\tilde{\mathcal{A}}$ to $\tilde{\mathcal{A}}$ and satisfies the group property $\alpha_z^{\Phi} \circ \alpha_w^{\Phi} = \alpha_{z+w}^{\Phi}$ for all $z, w \in \mathbb{C}$.

The KMS condition in infinite volumes

DEFINITION 3.19. We say that the state $\langle \cdot \rangle$ on \mathcal{A} satisfies **the KMS condition** for the interaction $\Phi \in \mathcal{I}_{\mathbf{r}}$ at inverse temperature β if for all $A \in \tilde{\mathcal{A}}$ and all $B \in \mathcal{A}$, we have

$$\langle AB \rangle = \langle B\alpha_{i\beta}^{\Phi}(A) \rangle.$$
 (3.55)

Equivalently, we have for all $A, B \in \mathcal{A}$, and all functions f such that $\widehat{f} \in C_{\mathbf{c}}^{\infty}$, that

$$\int_{\mathbb{R}} f(t) \langle \alpha_t^{\Phi}(A)B \rangle dt = \int_{\mathbb{R}} f(t - i\beta) \langle B \alpha_t^{\Phi}(A) \rangle dt.$$
 (3.56)

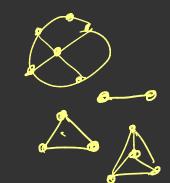
Let GB: set of KMS states For the interaction Q.

PROPOSITION 3.20. Let $\langle \cdot \rangle$ be a translation-invariant state on \mathcal{A} . Then $\langle \cdot \rangle$ satisfies the KMS-condition if and only if it satisfies the tangent- and variational definitions.

Next: beautiful theory, that holds (and can be proved) very generally!

Extremal Gibbs states

Context: GB: set of Gibbs states for O (KMS or tangent) Clear: GB is a convex set.



4 properties: extremal; short-range correlations; mixing; ergodic.

DEFINITION 3.25. An element x of a convex set \mathcal{X} is called **extremal** if it cannot be written as a convex combination $tx_1 + (1-t)x_2$, $t \in (0,1)$, of distinct elements $x_1, x_2 \in \mathcal{X}$. In particular, this definition applies to elements of \mathfrak{E} , $\mathcal{G}^{\Phi}_{\beta}$ and $\mathcal{G}^{\Phi}_{\text{t.i.}}$.

Definition 3.26. A state $\langle \cdot \rangle$ is said to have short-range correlations if

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \sup_{\substack{B \in \mathcal{A}_{\Lambda^c} \\ \|B\| = 1}} \left| \langle AB \rangle - \langle A \rangle \langle B \rangle \right| = 0.$$

It is said to be **mixing** if for all $A, B \in \mathcal{A}$ we have

$$\lim_{\|x\|\to\infty} (\langle A\tau_x B\rangle - \langle A\rangle\langle \tau_x B\rangle) = 0.$$

$$m_n(A) = \frac{1}{nd} \sum_{x \in \{1,...,n\}^d} translation$$

Definition 3.27. A translation-invariant state $\langle \cdot \rangle$ is **ergodic** if

$$\limsup_{n \to \infty} \left\langle \left(m_n(A) - \langle A \rangle \right)^2 \right\rangle = 0$$

for all $A \in \mathcal{A}$.

Theorem 3.28. Let $\langle \cdot \rangle \in \mathcal{G}^{\Phi}_{t.i.}$. The following properties are equivalent.

- (a) $\langle \cdot \rangle$ is extremal in \mathcal{G}^{Φ} .
- (b) $\langle \cdot \rangle$ is extremal in \mathfrak{E} .
- (c) $\langle \cdot \rangle$ has short-range correlations.
- (d) $\langle \cdot \rangle$ is mixing.
- (e) $\langle \cdot \rangle$ is ergodic.

Theorem 3.28. Let $\langle \cdot \rangle \in \mathcal{G}_{t.i.}^{\Phi}$. The following properties are equivalent.

- (a) $\langle \cdot \rangle$ is extremal in \mathcal{G}^{Φ} .
- (b) $\langle \cdot \rangle$ is extremal in \mathfrak{E} .
- (c) $\langle \cdot \rangle$ has short-range correlations.
- (d) $\langle \cdot \rangle$ is mixing.
- (e) $\langle \cdot \rangle$ is ergodic.

$$P_{roo}F:$$
 (b) => (a) => (c) => (d) => (e) => (b).

no short-range correlations -> not extremal.

$$2-5 = \lim_{N} \frac{\langle B_N \rangle}{\langle B_N \rangle} = \lim_{N} \frac{\langle B_N \rangle}{\langle B_N \rangle}$$

$$\langle A \rangle^{(1)} = \lim_{N \to \infty} \langle A \rangle^{(1)} \neq \langle A \rangle$$

THEOREM 3.28. Let $\langle \cdot \rangle \in \mathcal{G}_{t,i}^{\Phi}$. The following properties are equivalent.

- (a) $\langle \cdot \rangle$ is extremal in \mathcal{G}^{Φ} .
- (b) $\langle \cdot \rangle$ is extremal in \mathfrak{E} .
- (c) $\langle \cdot \rangle$ has short-range correlations.
- (d) $\langle \cdot \rangle$ is mixing.
- (e) $\langle \cdot \rangle$ is ergodic.

(c) => (d): Obvious From the definition:

Definition 3.26. A state $\langle \cdot \rangle$ is said to have short-range correlations if

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \sup_{\substack{B \in \mathcal{A}_{\Lambda^c} \\ \|B\| = 1}} \left| \langle AB \rangle - \langle A \rangle \langle B \rangle \right| = 0.$$

It is said to be **mixing** if for all $A, B \in \mathcal{A}$ we have

$$\lim_{\|x\|\to\infty} (\langle A\tau_x B \rangle - \langle A \rangle \langle \tau_x B \rangle) = 0.$$

THEOREM 3.28. Let $\langle \cdot \rangle \in \mathcal{G}_{t,i}^{\Phi}$. The following properties are equivalent.

- (a) $\langle \cdot \rangle$ is extremal in \mathcal{G}^{Φ} .
- (b) $\langle \cdot \rangle$ is extremal in \mathfrak{E} .
- (c) $\langle \cdot \rangle$ has short-range correlations.
- (d) $\langle \cdot \rangle$ is mixing.
- (e) $\langle \cdot \rangle$ is ergodic.

$$(d) \Rightarrow (e): \quad \forall A \in \mathcal{A}: \quad \forall E > 0, \exists R \text{ s.h.}$$

$$|\langle A \approx A \rangle - \langle A \rangle^{2}| \langle E \quad \forall |x| \rangle R$$

$$|\langle m_{n}(A)^{2} \rangle - \langle A \rangle^{2}| = \frac{1}{n^{2d}} \left[\sum_{x_{17} \in \{1_{11} - n\}^{2d}} \left(\langle e_{x_{17} \in \{1_{11} - n\}^{2d}} \rangle + \sum_{x_{17} \in \{1_{11} - n\}^{2d}} \langle e_{x_{17} \in \{1_{11} - n\}^{2d}} \rangle \right]$$

$$|\langle e_{x_{17} \in \{1\}} \rangle = \left[\sum_{x_{17} \in \{1\}^{2d}} \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1_{11} - n\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d}} \rangle + \sum_{x_{17} \in \{1\}^{2d}} \left(\langle e_{x_{17} \in \{1\}^{2d$$

Theorem 3.28. Let $\langle \cdot \rangle \in \mathcal{G}^{\Phi}_{t.i.}$. The following properties are equivalent.

- (a) $\langle \cdot \rangle$ is extremal in \mathcal{G}^{Φ} .
- (b) $\langle \cdot \rangle$ is extremal in \mathfrak{E} .
- (c) $\langle \cdot \rangle$ has short-range correlations.
- (d) $\langle \cdot \rangle$ is mixing.
- (e) $\langle \cdot \rangle$ is ergodic.

Not extremal:
$$\langle \cdot \rangle = \frac{1}{2} \langle \cdot \rangle^{(1)} + \frac{1}{2} \langle \cdot \rangle^{(2)}$$
, $\langle A \rangle^{(1)} \neq \langle A \rangle^{(2)}$
Use: $(5+1)^2 \langle 25^2 + 21^2 : 5 : 5 \neq 1$,
 $\langle A \rangle^2 = (\frac{1}{2} \langle A \rangle^{(1)} + \frac{1}{2} \langle A \rangle^{(2)})^2 \langle \frac{1}{2} \langle (A \rangle^{(1)})^2 + \frac{1}{2} (\langle A \rangle^{(1)})^2$
 $\leq \frac{1}{2} \langle mn(A)^2 \rangle^{(1)} + \frac{1}{2} \langle mn(A)^2 \rangle^{(2)}$

$$= \langle Mn(A)^2 \rangle$$

Decomposition of states

THEOREM 3.29. Let $\Phi \in \mathcal{I}$ and $\langle \cdot \rangle \in \mathcal{G}_{tr.inv}^{\Phi}$. There exists a measure μ on \mathcal{G}^{Φ} , that is concentrated on the extremal states of \mathcal{G}^{Φ} , such that for all $A \in \mathcal{A}$, we have

$$\langle A \rangle = \int_{\mathcal{G}^{\Phi}} \gamma(A) \, \mu(\mathrm{d}\gamma).$$

If the measure is concentrated on $\mathcal{G}_{tr.inv.}^{\Phi}$, it is unique.

This is based on Choquet's theorem:

PROPOSITION 3.30 (Choquet). Let K be a metrisable compact convex set and $\kappa \in K$. Then there exists a probability measure μ on K such that

- (a) μ is concentrated on the extremal points of K.
- (b) For any affine function $f: K \to \mathbb{R}$ we have $f(\kappa) = \int_K f(\eta) \mu(\mathrm{d}\eta)$.

Here:
$$K = \mathcal{G}^{\Phi}$$
. The affine Functions are given by $A \in \mathcal{A}$, namely: $f(y) = y(A)$.

Proof of Thm 3.29 (Decomposition of states):

Existence of the measure follows from Choquet's thm.

Oxe still need to prove that the measure is unique Cin the translation-invariant case).

Let FA. ... FAN be Febras above

We check that S FA, (x) - FAN (x) dyn(x) depends

on (.) only.

= lin) y(mn(A,)) ... y (mn(An)) dy(y)

= lim fy(mn(Ai)...mn(Au)) dy(y)

\[
 \lambda \text{mn (A1)... mn (Ah)}
 \]