
CHAPTER 6

Correlation functions

Correlation functions give information about the nature of phases. We collect
here some properties of correlation functions for the class of models defined in Eq.
(4.5). With Z⇤ = Tr e��H⇤ denoting the partition function, the correlation func-
tions at inverse temperature � are given by
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1. Correlation inequalities

It is natural to expect that correlations are stronger among those components of
the spins that correspond to stronger coupling parameters in the Hamiltonian. This
is the content of the next theorem.

Theorem 6.1. Assume that, for all x, y 2 ⇤, the couplings satisfy
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Further inequalities can be generated using symmetries. Some inequalities hold
for the staggered two-point function (�1)|x|hSi

0S
i
xi. The proof can be found after

that of Trotter’s product formula, which is needed.

Proposition 6.2 (Trotter formula). Let A,B be N⇥N matrices. Then
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Proof. We prove the second formula — the mild changes for the first formula
are straightforward. First, we have
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The norm of the right side clearly vanishes as n ! 1. Next, let Kn be the matrix
such that
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Consequently,
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We have
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so that the right side of Eq. (6.5) is less than a constant times nkKnk, which vanishes
in the limit n ! 1. ⇤

Proof of Theorem 6.1. Let |ai, a 2 {�S, . . . , S} denote the eigenvectors of
S3, and recall the operators S± defined before. The matrix elements of S1, S± are
all nonnegative, and the matrix elements of S2 are all less than or equal to those
of S1 in absolute values. Using the Trotter formula and multiple resolutions of the
identity, we have
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Observe that the matrix elements of all operators are nonnegative, except for S2
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2
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Indeed, this follows from

J1
yzS

1
yS

1
z + J2

yzS
2
yS

2
z = 1

4(J
1
yz � J2

yz)(S
+
y S

+
z + S�

y S
�
z ) +

1
4(J

1
yz + J2

yz)(S
+
y S

�
z + S�

y S
+
z ).
(6.8)



2. DECAY OF CORRELATIONS DUE TO SYMMETRIES 23

We get an upper bound for the right side of (6.7) by replacing |h�0|S2
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which proves the first claim. The second claim can be proved exactly the same
way. ⇤

Corollary 6.3. Assume that for all x, y 2 ⇤, the couplings satisfy
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where (A,B) denotes the Duhamel two-point function,
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It is not hard to extend the proof of Theorem 6.1 to the Duhamel function, so that
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Further, we have hS2
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ui by symmetry. The result follows. ⇤

2. Decay of correlations due to symmetries

In this section we prove a variant of the Mermin-Wagner theorem. The result
applies to systems that are e↵ectively two-dimensional.

We assume that J1
xy = J2

xy for all x, y. The decay of correlations is measured by
the following expression:
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The solution of this variational problem is essentially a discrete harmonic function.
We can estimate it explicitly in the case of “2D-like” graphs with nearest-neighbor
couplings. Let ⇤ denote a graph, i.e. a finite set of vertices and a set of edges, and let
d(x, y) denote the graph distance, i.e. the length of the shortest path that connects
x and y.
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Lemma 6.4. Assume that J i
xy = 0 whenever d(x, y) � 2 and let J =
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From Taylor expansions of the logarithm and of the hyperbolic cosine, there exist
C,C 0 such that
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The optimal choice is c = (4�S2JK)�1. ⇤

Theorem 6.5. Assume that J1
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xy for all x, y 2 ⇤. Then, for
i = 1, 2, we have
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In the case of 2D-like graphs, we can use Lemma 6.4 and we obtain algebraic
decay with a power greater than (8�JS2K)�1.

The proof uses the Hölder inequality for traces, which can be proved using chess-

board estimates. Recall that the “absolute value” of a matrix is |A| = (A⇤A)
1
2 , where

the square root of a nonnegative hermitian matrix can be defined by diagonalising
and taking the square root of the eigenvalues. The p-norm of a matrix is then defined
as kAkp = (Tr |A|p)1/p. Notice that limp!1 kAkp = kAk.

Proposition 6.6 (Hölder inequality for matrices). If 1  p, q, r  1
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It follows from a simple induction that
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whenever 1  r, p1, . . . , pn with
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r . There are no short proofs of Hölder’s

inequality for matrices. We prove below Eq. (6.17) for r = 1 only. It implies
Proposition 6.6 for r 2 N and it is enough for the purpose of proving Theorem 6.5.
The proof is due to Fröhlich [1978] and it uses chessboard estimates.

Lemma 6.7 (Chessboard estimate). For any n 2 N and any matrices
A1, . . . , A2n, we have
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Proof. Since (A,B) 7! TrA⇤B is an inner product, the following inequality
follows from Cauchy-Schwarz:
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This allows to use a reflection positivity argument. It is enough to prove the in-
equality for matrices that satisfy Tr (AiA⇤
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n = 1; the general result follows from
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Chessboard estimates allow to prove the case r = 1 of Hölder’s inequality.
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The inequality follows from Lemma 6.7 and from the identities
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S±
y = S1

y ± iS2
y . (6.24)

One can check that for any a 2 C, we have

eaS
3
y S±

y e�aS3
y = e±a S±

y . (6.25)
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We now compute the rotated Hamiltonian.
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Notice that B⇤ = B and C⇤ = �C. We obtain
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We now estimate the trace in the right side using the Trotter product formula and
the Hölder inequality for traces. Recall that kBks = (Tr |B|s)1/s, with kBk1 = kBk
being the usual operator norm.
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Exercise 6.1.

(i) Show that Eq. (6.17) follows from Proposition 6.6.
(ii) Show that Proposition 6.6 for r 2 2N follows from Eq. (6.17) for r = 1.

Exercise 6.2. Magnetisation and correlation functions. Let m⇤ denote the
magnetisation operator in the 3rd spin direction:
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