Assignment 9

Problem 1. Let X, Y be Hilbert spaces, and $U : X \to Y$ a unitary map. Let $T : D(T) \to X$ be a densely-defined operator in X. We define the operator \tilde{T} in Y by

$$D(\tilde{T}) = UD(T) = \{Ux : x \in D(T)\};$$

$$\tilde{T} = U^{-1}TU.$$

The goal of this exercise is to observe that T and \tilde{T} are closely related. Precisely, show that

- (a) $D(\tilde{T})$ is dense in Y, and $D(\tilde{T}) = Y$ iff D(T) = X.
- (b) $\|\tilde{T}\| = \|T\|$ (both may be infinite).
- (c) \tilde{T} is closed iff T is closed. Also, $U^{-1}\overline{T}U = \tilde{T}$.
- (d) $D(\tilde{T}^*) = UD(T^*)$ and $U^{-1}T^*U = \tilde{T}^*$.
- (d) \tilde{T} is symmetric iff T is symmetric, and T is self-adjoint iff T is self-adjoint.
- (e) $\rho(\tilde{T}) = \rho(T); \, \sigma_{\rm p}(\tilde{T}) = \sigma_{\rm p}(T); \, \sigma_{\rm c}(\tilde{T}) = \sigma_{\rm c}(T); \, \sigma_{\rm r}(\tilde{T}) = \sigma_{\rm r}(T).$

Problem 2. We have seen in Assignment 5 that the Fourier functions $e_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$ form an orthonormal basis for $L^2(\mathbb{T})$, where \mathbb{T} is the one-dimensional torus $[0, 2\pi]$. Then any $f \in L^2(\mathbb{T})$ can be written as

$$f = \sum_{k \in \mathbb{Z}} \widehat{f}_k e_k.$$

The Fourier coefficients \hat{f}_k are uniquely determined (actually, $\hat{f}_k = (e_k, f)$) and they satisfy $\sum_k |\hat{f}_k|^2 = ||f||^2 < \infty$. Thus the Fourier transform can be viewed as a map

$$U: L^{2}(\mathbb{T}) \to \ell^{2}(\mathbb{Z}),$$
$$f \mapsto Uf = (\widehat{f}_{k}).$$

(a) Check that U is a unitary map.

(b) If $f \in C^1(\mathbb{T})$, check that

$$(\widehat{f'})_k = \mathrm{i}k\widehat{f}_k.$$

Let $D = -i\frac{d}{dx}$ the differential operator with domain $D(D) = C^1(\mathbb{T})$, and let M be the multiplication operator in $\ell^2(\mathbb{Z})$, $M(a_k) = (ka_k)$, with domain UD(D). Show that

- (c) $M = U^{-1}DU$.
- (d) D and M are symmetric.
- (e) Describe the closure \overline{M} , and check that \overline{M} is self-adjoint.
- (f) Conclude that D and M are both essentially self-adjoint.