Assignment 8

Problem 1. Let X be a Hilbert space. Show that if T is a bounded, positive definite operator on X, then $(X, (\cdot, T \cdot))$ is a Hilbert space iff there exists c > 0 such that

$$(x, Tx) \ge c \|x\|^2$$

for any x. Hint: One direction is easy. For the other direction, consider the inclusion map

$$\iota : (X, (\cdot, \cdot)) \to (X, (\cdot, T \cdot))$$
$$x \mapsto x,$$

and use the inverse mapping theorem. (Thanks to Michael Doré for the hint!)

Problem 2. Let $T \in \mathcal{B}(X)$, and $\alpha, \beta \in \rho(T)$. Let $R_{\alpha} = (T - \alpha \mathbb{1})^{-1}$ denote the resolvent.

(a) Show that it satisfies the *Hilbert relation* (or *resolvent equation*)

$$R_{\alpha} - R_{\beta} = (\alpha - \beta) R_{\alpha} R_{\beta}.$$

(b) Show that $R_{\alpha}R_{\beta} = R_{\beta}R_{\alpha}$.

Problem 3. (Shift operators) We consider the right and left shift operators on $\ell^2(\mathbb{N})$:

$$S(x_1, x_2, \dots) = (0, x_1, x_2, \dots),$$

$$T(x_1, x_2, \dots) = (x_2, x_3, \dots).$$

- (a) Find ||S||, ||T||, S^* , T^* , S^{-1} , T^{-1} .
- (b) Find ran S, ran T, ker S, ker T, and check that

$$\operatorname{ran} S = (\ker T)^{\perp}, \qquad \operatorname{ran} T = (\ker S)^{\perp}.$$

(c) Find the spectrum of S and T.

Problem 4. Let $T \in \mathcal{B}(X)$. Show that

- (a) If $u_1, \ldots, u_n \in X$ are eigenvectors of T corresponding to distinct eigenvalues, then $\{u_1, \ldots, u_n\}$ forms a linearly independent set.
- (b) If $T = T^*$, and M is an invariant subspace (that is, $T(M) \subset M$), then M^{\perp} is also invariant.

Problem 5. The lottery question. Give a correct solution to Michael Doré by Tuesday, and enter the lottery for a bottle wine!

Let ℓ_0 be the space of all sequences of complex numbers $(x_1, x_2, ...)$ with finitely many nonzero entries. Can you find a norm such that ℓ_0 is complete? If yes, give it. If not, prove there exists none.

(I heard that Baire category theorem might help.)