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i
R�esum�eUne classe de syst�emes de Physique Statistique Quantique sur r�eseau est �etudi�eemath�ematiquement de mani�ere rigoureuse. Les mod�eles que nous consid�erons ont unhamiltonien compos�e de deux termes : H = V + T ; typiquement, V repr�esente une inter-action entre les particules, et T est l'�energie cin�etique. Nous supposons que pour une basejudicieusement choisie de l'espace de Hilbert, V est un op�erateur diagonal, pouvant êtrerepr�esent�e par une interaction classique. T n'est pas n�ecessairement diagonal dans cettebase; sa norme est petite devant V .Dans la premi�ere partie de ce travail, nous admettons que V satisfait une \conditionde Peierls"; en gros, cela signi�e que les excitations de V sont s�epar�ees par un gap. �A l'aided'une extension de la th�eorie de Pirogov-Sinai, nous pouvons montrer que le diagramme dephases de V +T , �a basse temp�erature, est proche de celui de V �a temp�erature nulle. Celasigni�e que ce dernier est stable par rapport aux 
uctuations quantiques et thermiques.Certaines propri�et�es des phases �a basse temp�erature peuvent alors être �etablies, concernantla valeur des param�etres d'ordre et la d�ecroissance des fonctions de corr�elation.La deuxi�eme partie de ce travail consiste �a mieux comprendre les e�ets quantiques.Nous montrons que les 
uctuations quantiques cr�eent une nouvelle \interaction e�ective"qui s'ajoute �a l'interaction V . Une formule est propos�ee, qui permet de calculer explicite-ment cette interaction pour des mod�eles pr�ecis. Sous certaines hypoth�eses | notammentune condition de Peierls pour cette nouvelle interaction, et une condition assurant que lesautres e�ets quantiques sont faibles | nous prouvons que le diagramme de phases �a bassetemp�erature est proche de celui, �a temp�erature nulle, de cette nouvelle interaction. Dansce cas aussi, certaines caract�eristiques des phases peuvent être pr�ecis�ees.Ces r�esultats sont illustr�es en consid�erant deux mod�eles simples. Un mod�ele deHubbard modi��e, \asym�etrique", dans lequel les �electrons de spin \up" ont une masseplus faible que ceux de spin \down". Les d�eplacements des �electrons, combin�es �a lar�epulsion coulombienne, sont responsables d'une interaction antiferromagn�etique e�ective.Les phases �a basse temp�erature brisent une sym�etrie de l'hamiltonien (l'invariance sousles translations). Le second mod�ele est celui de Bose-Hubbard, qui d�ecrit un syst�eme debosons sur r�eseau, avec interactions locales et entre proches voisins. Lorsque les interac-tions sont fortes, le caract�ere isolant des phases �a basse temp�erature peut être d�emontr�e.



ii
AbstractA class of lattice systems of Quantum Statistical Physics is mathematically and rig-orously studied. The models we are considering have Hamiltonian formed by two terms:H = V + T ; typically, V represents an interaction between the particles and T is thekinetic energy. We suppose that, in a judiciously chosen basis of the Hilbert space, V is adiagonal operator that can be represented by a classical interaction. T is not necessarilydiagonal in this basis; its norm is small compared to that of V .In the �rst part of this work, we assume that V satis�es a \Peierls condition"; roughlyspeaking, this means that excitations of V are separated by a gap. With the help ofan extension of the Pirogov-Sinai theory, we can show that the low temperature phasediagram of V + T is close to that of V at temperature zero. This means that the latteris stable with respect to quantum and thermal 
uctuations. Some properties of the lowtemperature phases can be established, concerning values of order parameters and decayof correlation functions.The second part of this work consists in better understanding the quantum e�ects.We show that quantum 
uctuations create a new \e�ective interaction", which adds tothe interaction V . A formula is proposed, allowing to compute explicitely this interactionin concrete models. Under some assumptions | in particular, a Peierls condition for thisnew interaction, and a condition ensuring that other quantum e�ects are small | weprove that the low temperature phase diagram is close to that of this new interaction attemperature zero. In this case also, several features of the phases can be precised.These results are illustrated by considering two simple models. A modi�ed, \asymmet-ric" Hubbard model in which spin \up" electrons have a smaller mass than spin \down"electrons. The moves of electrons, combined with Coulomb repulsion, is responsible foran e�ective antiferromagnetic interaction. Low temperature phases break a symmetryof the Hamiltonian, namely the invariance under translations. The second model is theBose-Hubbard one, which describes a system of bosons on a lattice, with local and neigh-bour interactions. When the interactions are strong, the insulating behaviour of the lowtemperature phases can be proven.
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CHAPTER 0Prolog La l�egende... C'est ce qui nous restedes v�erit�es d'hier, quand elles passentpar le crible des v�erit�es du jourd'hui...Fran�cois Bourgeon,Le Dernier Chant des Malaterre{ NON ! Mais en�n, vous voulez d�ecrire deux phases, aux propri�et�es physiques di��erentes,avec les mêmes �equations ? Regardez-la, notre fonction de partition[il d�esigne le tableau noir, sur lequel la main nerveuse de Max Born avait trac�eZ = e�NF=kT= ZV dq1:::ZV dqN e�U(q1;:::;qN )=kT ]Vous voudriez que pour une valeur de la temp�erature, on ait un gaz, et pour uneautre valeur de la temp�erature, même proche, on ait un liquide ? Et au pointde transition, que tous les deux d�ecoulent de cette �equation ? Si votre p�ere vousentendait... vous êtes compl�etement d�epourvu de sa clairvoyance !Bouillonnant, la moustache agressive, Arnold Sommerfeld parvenait �a se faire entendremalgr�e le brouhaha dû �a de nombreuses autres discussions, tout aussi anim�ees. Sa r�epliquelaissa van der Waals Jr sans voix. Il n'est pas facile de se cr�eer une personnalit�e scienti�quelorsque toute r�e
exion s'accompagne d'une pens�ee �a ce p�ere prestigieux, et Sommerfeld,sans doute involontairement, avait touch�e un point douloureux. Mal �a l'aise, van derWaals se tourna en direction de Sommerfeld, et je ne l'eus pas entendu si je ne fus assis �aproximit�e.{ Monsieur, je me permets d'insister, il n'existe pas deux descriptions possibles pourun syst�eme de physique statistique; et l'int�egrale contient toutes les positions pos-sibles des particules du syst�eme. Celles qui correspondent �a un gaz, et celles quicorrespondent �a un liquide.Je ne sais pas si Sommerfeld comprit les mots de van der Waals. Les d�ebats �etaientvifs. A�n de mieux saisir le sujet de la discussion, je revins �a la fonction de partition surle tableau noir. Celui-ci �etait cach�e par un groupe dans lequel je reconnus notre orateur,Max Born, qui d�etaillait certains passages de cette th�eorie de Mayer qu'il venait de nousexpliquer. Un de ses auditeurs, les cheveux noirs et les l�evres pro�eminentes, contrastaitsinguli�erement avec le visage �n au front d�egarni, et les cheveux grisonnants, de Born.C'�etait George Uhlenbeck, qui justement prenait la parole :{ D'o�u vient la grande similitude des propri�et�es macroscopiques ? Par exemple, toutesles substances apparaissent dans des phases solide, liquide ou gaz. Cela indique, je1



2 0. PROLOGcrois, que ces propri�et�es ne d�ependent que de certaines caract�eristiques qualitativesdes forces interatomiques.Cette session matinale de la conf�erence �a l'occasion du centenaire de Johannes vander Waals, commen�cait �a me lasser. Il �etait certes distrayant d'assister �a ces empoignadesintellectuelles | qui par ailleurs mena�caient de ne pas en rester l�a | mais tout cela med�epassait, et je peinais �a saisir les subtilit�es de cette controverse sur les transitions dephases.La fenêtre laissait voir des nuages au-dessus d'Amsterdam, en ce jour de novembre1937. Mon voisin, moins rêveur, prenait part �a la discussion :{ Une fonction de partition, ce sont des int�egrales de fonctions continues. Commentobtenir les discontinuit�es associ�ees aux transitions de phases ?Revenant �a l'assembl�ee, je vis Hendrik Kramers, le chairman, qui rajustait ses lunettes; etd'une voix autoritaire qui contredisait l'aspect juv�enile de son visage,{ Mes chers coll�egues, s'il vous plâ�t, un peu de retenue. Arnold, s'il vous plâ�t.L'heure du repas approche. Puisqu'aucun consensus ne se d�egage, je propose devoter. Que ceux qui soutiennent l'id�ee que la fonction de partition contient lapossibilit�e d'une transition de phases, l�event la main.Je regardai autour de moi, quelque peu apeur�e. Un vote sur un sujet scienti�que, quelleid�ee incongrue ! Et surtout, quelle position devais-je prendre ? J'aper�cus Sommerfeldcroisant fermement les bras, alors que Born, Uhlenbeck et van der Waals levaient la main.De nombreuses personnes soutenaient le même point de vue. Puis le chairman demanda�a ceux jugeant qu'une et une seule phase pouvait être d�ecrite par la même �equation, dese manifester. Sommerfeld ne fut pas le seul �a exprimer cet avis, et un nombre semblablede mains se lev�erent. Kramers, d�epit�e, d�ecida que ce vote n'�etait pas concluant, et refusad'en faire un acte o�ciel du colloque.R�ef�erences :1. M. Born, The statistical mechanics of condensing systems, Physica IV, 1034{1044(1937)2. M. Born et K. Fuchs, The statistical mechanics of condensing systems, Proc. Roy.Soc. A166, 391{414 (1938)3. B. Kahn et G. Uhlenbeck, On the theory of condensation, Physica 5, 399{416 (1938)4. M. Dresden, Kramers's contributions to Statistical Mechanics, Physics Today, Sep-tember 1988, 26{335. G. E. Uhlenbeck, Summarizing remarks, in Statistical Mechanics, Foundations andApplications, T. A. Bak ed., W. A. Benjamin, 574{582 (1967)6. MacTutor, http://www-history.mcs.st-and.ac.uk/history/



0. PROLOG 3
The legend... This is what remainsfrom yesterday truths, when they gothrough the riddle of today truths...Fran�cois Bourgeon,Le Dernier Chant des Malaterre{ NO! How dare you describe two phases, with di�erent physical features, with thesame equations? Look at it, our partition function[he pointed towards the blackboard, on which Max Born's nervous hand had drawnZ = e�NF=kT= ZV dq1:::ZV dqN e�U(q1;:::;qN )=kT ]You'd like that for a temperature value we get a gas, and for another temperaturevalue, even close, we get a liquid? And at the transition point, that both of themresult from this equation? If your father could hear you... you're totally devoid ofhis cleverness!Boiling, with agressive moustache, Arnold Sommerfeld succeeded in making himselfheard despite the hubbub due to numerous animated discussions. His respons let van derWaals Jr speechless. It is not easy to create oneself a scienti�c personality, when eachre
ection comes with a thought to his pretigious father, and Sommerfeld, doubtless unin-tentionally, had touched a sensible point. Ill at ease, van der Waals turned to Sommerfeld.I would not have heard him if I had not been seated nearby.{ Sir, allow me to insist, there aren't two possible descriptions for a system of sta-tistical physics, and the integral contains all possible positions of particles of thesystem. Those that correspond to a gas, and those that correspond to a liquid.I do not know whether Sommerfeld understood the words of van der Waals. Thedebates were spirited. In order to catch better the subject of the discussion, I lookedagain at the partition function on the blackboard. But it was hidden by some peopleamong whom I recognised our speaker, Max Born, who was explaining in detail someparts of Mayer's theory that he had just been talking about. One of his listener, withblack hair and prominent lips, singularly contrasted with the �ne and bald foreheadedface, and the grey hair of Born. This was George Uhlenbeck, who started to speak:{ Where does the great similarity of the macroscopic properties come from? Forexample, all substances appear in solid, liquid, or gas phases. This means, I be-lieve, that these properties only depend on certain qualitative characteristics ofinteratomic forces.This morning session of the conference of Johannes van der Waals' centenary wasboring me. It was certainly piece of entertainment to assist to such intellectual �ghts |



4 0. PROLOGwhich moreover threatened to go further | but all of this was well beyond me and I wassmuggling to grasp the subtleties of this controversy about the phase transitions.Clouds above Amsterdam could be seen through the window, on this November dayof 1937. My neighbour, less daydreamer, was taking part in the discussion:{ Partition functions, they are integrals of continuous functions. How to obtain thediscontinuities associated to phase transitions?Coming back to the meeting, I saw Hendrik Kramers, the chairman, readjusting his glasses;and with an autoritative voice, that contradicted his youthful face,{ My dear collegues, please, have some restraint. Arnold, please. It will soon belunch time. As no consensus is being drawn, I suggest to vote. Those who upholdthe idea that the partition function contains the possibility of a phase transition,please lift up your hands.I looked around me, somehow scared. A vote on a scienti�c subject, what a peculiar idea!And moreover what position should I support? I noticed Sommerfeld crossing resolutelyhis arms, while Born, Uhlenbeck and van der Waals were raising their hands. Numerouspeople were approving the same point of view. Then the chairman requested to those thatreckon that one and only one phase could be described by the same equation, to expressthemselves. Sommerfeld was not the only one to agree with this idea, and a similar numberof hands were uplifted. Kramers, destressed, decided that this vote was not conclusive,and refused to make of it an o�cial deed of the colloquium.References: see page 2. The translation of this prolog was achieved by Anne-Lise Ueltschi; merci, petites�ur !



CHAPTER 1Introduction1. GeneralitiesMany physical systems consist of particles in interaction, and share two characteristics:� the particles are described by the rules of Quantum Mechanics;� the number of particles is enormous.Some phenomena are closely related to these systems, as for instance magnetization, long-range order, super
uidity, superconductivity. Varying the thermodynamic parametersmay result in changing the properties of the phases. Sometimes the change is sudden,there is phase transition.A key role is played by the number of particles. First, it is a limitation to attempts ofsolving explicitely the Schr�odinger equation associated with interacting particles. Second,a su�cient description of the system involves only a small number of relevant (macroscopic)quantities | the system is governed by the laws of Thermodynamics.Thermodynamics is at the same time a powerful tool that applies to a wide class ofsystems, and a semi-phenomenological theory that requires a few inputs | for instance, astate equation. We cannot content ourselves with this theory for several reasons. First, wewould like to derive the state equation. Second, the description provided by bare QuantumMechanics, although inconvenient, is correct and we have to check that it does not bringpredictions that contradict those of Thermodynamics.A third motivation comes from the progress of Experimental Physics. Atomic scalesare now under observation, and natural questions are what are the electronic propertiesof a given material, knowing its atomic structure. In particular, what are the mechanismsfavouring magnetism or superconductivity?The link between the \true" microscopic description | here Quantum Mechanics |and macroscopic observation | thermodynamic quantities | is the subject of StatisticalPhysics. It provides recepies for the computation of thermodynamic potentials from thebasic laws. Actually, the creation of Statistical Physics was far from easy; strong resis-tance arose from the scienti�c community. Its main �gure, Ludwig Boltzmann, eventuallycommitted suicide, partly because of numerous misunderstandings met by his ideas. Twomain phenomena of Thermodynamics, namely irreversibility and phase transitions, seemincompatible with a microscopic description. Newton equations are reversible, therefore aclassical gas should obey a reversible equation of motion? And the withstanding to phasetransitions was illustrated in the prolog.It is now commonly accepted that phase transitions occur in the limit of in�nitesystems, although this can be proven only in models quite far from reality. Irreversibility isstill a subject of debate; see Lebowitz [Leb 1993] and Bricmont [Bri 1995] for two excellentdiscussions. 5



6 1. INTRODUCTIONSince it is in general mathematically not easy to obtain some information on themacroscopic properties of a system, we have to look at caricatures. A very useful sim-pli�cation is to consider lattice models; many mathematical techniques exist that applyonly in this case. Going back to a physical justi�cation for this assumption, we can invokeapplications to condensed matter systems. The lattice is due to a periodic arrangment of(motionless) atoms, creating a periodic potential. There is a natural basis for the Hilbertspace of quantum particles (electrons) feeling such a potential, namely the one formed byWannier states. Each state is labelled by a site of the lattice, and represents a particlethat is localized around the site. With a few additional assumptions, we obtain a latticemodel.Another class of models consists in spin systems. Here, a spin is attached at eachsite of the lattice; the phase space is a tensorial product of local phase spaces, thesebeing Hilbert spaces for one spin. The standard spin model is the Heisenberg model,with Hamiltonian involving nearest-neighbour interactions. When the Hamiltonian andall interesting observables are diagonal operators, the model can be reformulated in thecontext of Classical Statistical Mechanics.2. Classical lattice modelsMore than modelization of a given physical system, classical lattice models are illus-trations of di�erent phenomena. The most famous and simplest one is the Ising model,\describing" a system of spin 12 on a lattice. A con�guration of spins is an assignmentof a value �1 to each site. The interaction between the spins is nearest-neighbour; moreprecisely, each pair of neighbouring spins in opposite states [i.e. (+;�) or (�;+)] con-tributes for an amount of energy of J , while pairs with identical spins have energy �J . Athigh temperature, there is a unique phase, that has all the symmetries of the Hamiltonian| in particular, it is invariant under the spin 
ips. The magnetization is zero. At lowtemperature, however, there are two phases, one with positive magnetization, the otherwith negative magnetization. These phases are not invariant under spin 
ips: there issymmetry breaking. Qualitatively, the Ising model describes the behaviour of a magnet.The proof of these properties was done by Peierls [Pei 1936] (see also [Dob 1965,Gri 1964]) and is called now the \Peierls argument". He introduced geometric concepts,namely the \contours". Retrospectively, these are natural notions in view of probabilitytheory: at high temperature, the spins are essentially independent random variables, anda central limit theorem holds. At low temperature, the spins are strongly dependent, butcontours play the role of essentially independent random variables. For boundary condi-tions \+", respectively \�", contours have low probability of occurrence and most of thesites are in the state \+", respectively \�".It is interesting to consider now the Ising model with an external magnetic �eld. Whenit is positive, there is only one phase with positive magnetization; decreasing the magnetic�eld, we obtain the \+" phase. The same can be done with a negative magnetic �eld, so asto obtain the \�" phase. This describes a �rst-order (or discontinuous) phase transition.The magnetization is a �rst derivative of the free energy of the system; we see here thatit has a discontinuity as a function of the magnetic �eld, when it is zero.There exists a beautiful and general theory for �rst-order phase transitions in latticemodels, that is due to Pirogov and Sinai [PS 1975]. It relies on the Peierls argument,but involves new ideas to treat the case where phases are not related by symmetry. Itprovides a good description of the low temperature phases and of the low temperature



4. ABOUT THIS WORK 7phase diagrams for a large class of models. Important notions are that of phase coexistenceand metastable free energy | both have physical as well as mathematical meaning.3. Quantum lattice modelsThere is a curious conservation law between the classical and quantum cases, in Sta-tistical Physics. Namely, the modelization process leading to a classical model has nophysical justi�cation; for instance, why should Ising spins be only in the z-direction; andwhy should they interact in their ferromagnetic way? However, given the model, the def-inition of thermodynamic quantities �nds a deep justi�cation in probability theory. Onthe other hand, basic quantum models are more natural | the Hubbard model, for in-stance, consists in kinetic energy and Coulomb interaction. But the motivation behindthe de�nition of Gibbs states is not clear.The study of quantum models is much harder than classical ones, and there is com-paratively less results, for less models. The questions we are interested in are roughly thesame as for classical systems | namely, to understand which symmetries are broken atlow temperatures. An important | negative | result is the Mermin-Wagner theorem,which states that continuous symmetries cannot be broken at one or two dimensions.There are two rather general methods to prove the existence of phases with magnetiza-tion or long-range order. One is the \re
ection positivity" [DLS 1978, FL 1978], the otheris the Peierls argument applied to quantum models [Gin 1969, Rob 1969]. An importantadvantage of the �rst one is the possibility to study breakings of continuous symmetries.The second one is more robust to perturbations of the model; it also allows to de�ne purestates.Beside of the results which enter these two classes, there are numerous contributionswhere special properties of models are used, together with the imagination of their authors.4. About this workThere are two aspects. The �rst one consists in the extension of the Pirogov-Sinaitheory to quantum models. In a collaboration with Christian Borgs and Roman Koteck�y[BKU 1996, BKU 1997], we showed that \nice" classical models possess low temperaturephases that are stable with respect to a quantum perturbation.1 This amounts to say thatclassical models may be correct approximations of the quantum reality. The proof consistsin an expansion with Duhamel formula (Dyson serie) mapping the quantum model ontoa classical model in one more (continuous) dimension. Then it is possible to introducecontours and to use the ideas of Pirogov-Sinai theory. Notice that the quantum modelis mathematically very close to a classical one, but the concepts (in particular that ofmetastability) are physically not so meaningful.The second aspect is to focus on the \quantum 
uctuations", and to show thatthey bring a new (classical) e�ective interaction between the particles. This allows tostudy models where the classical part has degeneracies that are removed by the quan-tum perturbation.2 This work was done with Christian Gruber and Roman Koteck�y[KU 1998, GKU 1998]. It is possible to compute e.g. the nearest-neighbour antiferro-magnetic interaction in the Hubbard model. Conditions are given in order that the lowtemperature phases are decided by this e�ective potential. Notice that the Hubbard model1Similar results were obtained at the same time by a group in Z�urich consisting in Nilanjana Datta,Roberto Fern�andez and J�urg Fr�ohlich [DFF 1996].2Related results were previously obtained by the Z�urich group, the same persons and Luc Rey-Bellet[DFFR 1996, FR 1996].



8 1. INTRODUCTIONdoes not satisfy one of the assumptions (there is \quantum instability"; it is related to therotational invariance of the spins). With this e�ective interaction, we make a small steptowards justifying classical models.A natural question is about true quantum phenomena such as super
uidity and super-conductivity. Our results bring some information, but these are negative results: in thedomain of applicability of our method, no o�-diagonal long-range order may be present(remark that in most of the situations, we have no mathematical statement to support thisa�rmation). This knowledge is nevertheless useful, because, as noted in [DFF 1996]: \itallows people hunting for quantum e�ects to rule out large regions of the phase diagram,saving e�orts and misunderstandings".Let us end this introduction by a description of the contents of this thesis.After a brief heuristical discussion on the de�nition of macroscopic states in classicalsystems, Chapter 2 introduces the necessary mathematical de�nitions.The results proved in this thesis are written in Chapter 3. The �rst theorem claims theanalyticity of the free energy at high temperature | this result is not new, but is a niceexample of the use of cluster expansions. The second theorem is also about analyticity,for all temperature, provided only local interactions are not small. The next section isdevoted to the stability of the properties of classical models with respect to the quantum
uctuations (quantum Pirogov-Sinai theory). In the last section the e�ective potential isintroduced, and after a few assumptions, the stability of phases selected by the e�ectiveinteraction is stated.The title of Chapter 4 is \Applications to Hubbard models". Notice the plural of\models". It of course suggests that the standard Hubbard model is not included inthose we consider. Actually, we introduce �rst the \asymmetric" Hubbard model whereelectrons of di�erent spins do not have the same hopping. Low temperature phases presentchessboard structures; we observe however that when adding longer-range hopping, thephases may be drastically di�erent. Second we study the Bose-Hubbard model describingbosons on a lattice.The basic mathematical tool is cluster expansion, that we present in Chapter 5. Atthe end of the chapter, we illustrate its usefulness with high temperature expansions.Ideas and results of the Pirogov-Sinai theory are explained in Chapter 6. Ising andBlume-Capel models are discussed, because they allow to introduce both the geometricnotions (\contours") and the concept of metastable free energy. The results of this theoryare then stated in the framework of an abstract contour model, that will be directly usedin quantum systems.Chapter 7 starts with a description of the Duhamel formula. It is then applied toquantum models of Statistical Physics, in order to obtain a contour model where contourshave small activities.The last Chapter 8 is devoted to the e�ective potential. The ideas are �rst presentedin the special case of the asymmetric Hubbard model, in a heuristical manner. Next thegeneral situation is considered, and e�orts are paid in order to de�ne suitable contours, and�nally to prove that their activities are su�ciently small in order to meet the requirementsof the Pirogov-Sinai theory.Let us summarize the structure of this thesis with a diagram. If A and B are twosubjects, the notation A!B means that the proof of the result of B necessitates the toolsdevelopped in A.
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high temperatures

local interactions

quantum Pirogov-Sinai theory

effective interactions

8: effective interactions

7: Duhamel representation

5: cluster expansions

6: Pirogov-Sinai theory

Results of

Chapter 3:

The diagram shows that the demonstration of the high temperature phase only requirescluster expansions; the absence of phase transitions in systems with local interactions fol-lows from cluster expansions and Duhamel reprentation; the Pirogov-Sinai theory, togetherwith the Duhamel representation of quantum models, lead to the statements of the quan-tum Pirogov-Sinai theory; �nally, the e�ective interactions due to quantum 
uctuationsare consequences of all four chapters.
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CHAPTER 2Mathematical modelization1. Heuristical discussion (classical systems)Statistical Physics describes systems consisting of a huge number of particles. Havingthe microscopical description, how can we obtain the thermodynamics of the system? Amathematical answer to this question is the canonical formalism, that we introduce inSection 3. We can take it as a postulate, but it is a very crude one. So let us start with adiscussion of physical ideas concerning systems at equilibrium.Since the number of the particles in the system is enormous, two obvious and funda-mental remarks have to be done:� the microscopic state is impossible to know,� relevant quantities are macroscopic observables, i.e. those involving a huge numberof particles.On the other hand, it is known from Thermodynamics that only a few numbers are neces-sary to characterize a physical system. For instance, the thermodynamic state of a gas ofN particles in a volume V is now speci�ed by its temperature, even though the number ofdegrees of freedom is about 1023. \To be speci�ed by its temperature" means that if wemeasure the same physical quantity in two di�erent systems with identical temperature(and identical volume and number of particles), we �nd the same value, although they arein two di�erent microscopic states. Thermodynamics would be no Science without thisproperty of reproducibility of its experiments. Remark that the state of the system canbe thermodynamically speci�ed by choosing other parameters, as for instance the energy.Let us be more precise | although we keep vague in mathematical notions. Let
 = 
N be the phase space for a system of N particles. We suppose that there exists afunction E : 
! R (the energy observable). Let us denote by M the set of macroscopicobservables. For given energy E, let 
(E) � 
 be the set of microscopic states ! suchthat E(!) = E.Postulate 1 (Reduction of variables). There exists 
typ(E) � 
(E) (the setof typical states) on which any macroscopic observable M 2M is constant; moreover, thesystem is in a state of 
typ(E), any time it is observed.The last statement means that 
(E) n
typ(E) is a small set, and that its events areso rare that they never really happen (and if they do, people would say there is an error,and the repetition of the experiment would con�rm their belief).We need to introduce the temperature, since we want to discuss the canonical ensemble.Any large system at equilibrium has a temperature, therefore there must exist a function� : [E
typ(E)! R such that �(!) is the inverse temperature of the system1; in the caseof a gas, � would be associated to the distribution of the kinetic energy of the particles. �1Note that the inverse temperature function is not de�ned on the whole of 
, and is therefore not anobservable. 11



12 2. MATHEMATICAL MODELIZATIONis also constant on 
typ(E); this means that the temperature is a function of the energy.Assuming it is invertible, it allows to de�ne the set of typical states at inverse temperature�, namely 
typ(�) = 
typ(E(�)).Since we want to derive the macroscopic behaviour from the microscopic description,we should now consider an element of 
typ(�) and compute the values of the observables.This is impossible in practice, already because the set 
typ(�) is hard to specify! Butsince any M 2M is constant on 
typ(�), we haveM(!) = Z d�(!0)M(!0)for any ! 2 
typ(�) and any probability measure � on 
 such that �(
typ(�)) = 1. Wecall such a measure a �-equilibrium measure; it describes the equilibrium phases at inversetemperature �.Postulate 2 (Canonical ensemble). Let � be the uniform measure on 
. Thend�(!) = e��H(!) d�(!).Z d�(!0) e��H(!0)is a �-equilibrium measure.These two postulates are plausible for systems with a lot of particles, since the lawof large numbers plays a crucial role | we see here the intrinsic probabilistic nature ofstatistical physics systems.Similar ideas are discussed by Lebowitz [Leb 1993]. As for mathematical results tosupport this discussion, there are considerations on the \triviality of Gibbs measureswith respect to the �eld of global observables" [LR 1969, Lan 1973], and equivalence ofmicrocanonical and canonical ensembles, see e.g. [LPS 1994]. All this holds for classicalsystems; I prudently choose not to enter deep questions about quantum ones.2. Mathematical de�nitionsThis section contains all the necessary de�nitions and notations used throughout thisthesis. They are introduced without further justi�cation. We restrict ourselves to latticesystems; the phase space associated to each site will always be countable for classicalsystems, and is a Hilbert space with a countable basis in the case of quantum systems. Adescription of the formalism of Classical Statistical Physics may be found in [EFS 1993,Geo 1988, Sim 1993, Sin 1982, Vel 1997]. Concerning Quantum Statistical Mechanics, themathematical framework for systems with a variable number of particles | the secondquantization | is very well explained in [MR 1990]; for lattice models, standard referencesare [BR 1981, Sim 1993].We denote by � � Z� the lattice, � is the dimension of the system. The distancebetween x; y 2 � is jx� yj � dist(x; y) = kx� yk1. The r-boundary of � is @r� = fx 2� : dist(x;�c) 6 rg and its diameter is diam� = maxx;y2� jx�yj. Let f� 2 C , � � Z�; athermodynamic limit of f� is the limit of a sequence (f�n)n, such that �m � �n if m < n,and limn!1 j@r�nj=j�nj = 0 for all r < 1. We say that the thermodynamic limit off� exists, and worths f , if any such sequence converges to f ; we write f = lim�%Z� f�. Aset A is connected if for any x; y 2 A, there exists a sequence (x0; x1; : : : ; xn) such thatx0 = x, xn = y, xj 2 A and jxj � xj�1j = 1 for all j, 1 6 j 6 n. It is useful to de�nethe symbol e (\intersection"): for A;B � Z�,A eB () A [B is a connected set.



2. MATHEMATICAL DEFINITIONS 13We shall need a bound for the number of connected sets of given size, that contain agiven site. So let2 i = (2�)2; then we have the property#(A � Z� : A 3 x and jAj = `) 6 i`: (2.1)2.1. Phase spaces. Our intention is to describe quantum systems that are perturba-tions of classical ones; this is the reason why we introduce �rst the classical con�gurations,which then allow to construct the Hilbert spaces of quantum models.Three are basically three types of models: spin, fermions and bosons ones.3 The singlesite phase space 
 is
 = 8><>:
 = f�S;�S + 1; : : : ; S � 1; Sg for spin-S systemsf0; 1g� for fermion systemsN� for boson systems.Here, � is a �nite set that represents internal degrees of freedom of particles, such as spins(for the Hubbard model, � = f"; #g).The phase space of the classical model is the con�guration space 
 = 
Z�, andn 2 
 is a con�guration on the in�nite lattice. nx 2 
 represents the con�guration atsite x 2 Z� and nA is the restriction of n to A � Z�. For particle systems, we de�ne nx�,(x; �) 2 Z� � �, in obvious manner (nx� 2 f0; 1g for fermions, nx� 2 N for bosons). Thetotal number of particles in A � Z� isjnAj = Xx2A;�2�nx�: (2.2)Finally, we introduce the notation nAn0�nA for a con�guration of 
�, whose restriction onA, resp. � n A, is nA, resp. n0�nA.The Hilbert space representing the phase space of a quantum system has di�erentstructure, in the case of spins, bosons or fermions:� spin systems: tensorial product of copies of the Hilbert space for one spin attachedto a given site of the lattice;� boson systems: Fock space of symmetric wave functions on �;� fermion systems: Fock space of antisymmetric wave functions on �.In the case of particle systems, a convenient basis of the Fock space is that of occupationnumbers of the position operators. The distinction between spins, bosons or fermions iscontained in the choice of the single site phase space, and on the action of creation andannihilation operators on the elements of the basis of occupation numbers, that we de�nebelow.Let H� the Hilbert space of the system in a �nite volume � � Z�; it is spanned bythe classical con�gurations of 
�, i.e. H� contains all jvi,jvi = Xn�2
� an� jn�i; an� 2 C ; (2.3)2\i" is the Hebrew letter \beth".3For sake of simplicity, but regretfully, I assume here that the considered systems are fully fermionicor fully bosonic. However, there are interesting models with mixed particles, as for instance the Heliummodel that is discussed in the concluding remarks, Chapter 9. The Hilbert space for systems of mixedparticles are tensorial products of Hilbert spaces for each species.



14 2. MATHEMATICAL MODELIZATIONand the scalar product is hvjv0i = Xn�2
� a�n�a0n� : (2.4)2.2. Classical interactions. An interaction is a collection of mappings � = (�A)A,A � Z� connected, �A : 
A ! R[f+1g. Let tx denote a translation of x 2 Z�; its actionon the con�gurations is de�ned by (txn)y = ny�x; on the interactions, it is tx�A = �txA =�A+x. The interaction � is periodic with period `0 2 N if �A(nA) = tx�A((txn)A+x) forany x 2 `0Z�, A � Z� and nA 2 
A. It is translation invariant if it is periodic withperiod `0 = 1. The set of periodic con�gurations is denoted 
 per.An interaction � is anm-potential if there exists a set of con�gurations G � 
 suchthat for all A � � for which �A 6= 0,� �A(gA) = �A(g0A) for all g; g0 2 G,� �A(nA)� �A(gA) > 0 for all g 2 G and n 2 
, such that nA 6= g0A for all g0 2 G.G is then the set of ground states of �.There is exponential decay if there is a constant c > 0 such that for r <1XA3x;jAj > r j�A(nA)j ecjAj <1 (2.5)for any n 2 
 with supx2Z� jnxj < 1. (This de�nition allows the potential to have ahard-core.) The interaction is stable if for all x, n,XA3x 1jAj�A(nA) > bjnxj � a (2.6)for some constants a <1, b > 0. The space of all stable interactions is a vector space, ifwe de�ne �+	 by (�+	)A(nA) = �A(nA) +	A(nA); we note O the zero of this vectorspace.The Hamiltonian H�� (with free boundary conditions) is the sum of the interactionsin the system, de�ned by H�� (n�) = XA���A(nA): (2.7)The energy (or mean energy) of a periodic con�guration n 2 
per ise�(n) = lim�%Z� 1j�jH�� (n�): (2.8)The minimum energy of an interaction � is the ground energy e�0 ,e�0 + infn2
per e�(n): (2.9)The set of the periodic ground states of an interaction � isG� = fg 2 
 per : e�(g) = e�0 g:This set may be empty. There exist systems with �nite single site phase space, and �nite-range, translation invariant interaction, which do not possess any periodic ground states,see [Mi�e 1993].Two interactions � and 	 are physically equivalent if for any � � Z�, the di�erenceXA\� 6=?��A(nA)�	A(nA)�



2. MATHEMATICAL DEFINITIONS 15does not depend on n�. Two physically equivalent interactions have the same set of Gibbsstates [Geo 1988], see also [EFS 1993] for useful comments.Example: Zero-potentials [GJL 1992, Ken 1994].A zero-potential � is an interaction that is physically equivalent to O. Then �+� and� are physically equivalent.Zero potentials are useful when studying certain frustrated interactions, since theymay allow to replace this interaction by an m-potential. For instance, take a lattice gasmodel with interaction on sets B = (x; y; z) (where x and z are two opposite neighboursof y): 8><>:�B( t d d) = �B( d d t) = 0�B( d t d) = 43�B( d d d) = �B( d t t) = �B( t t d) = �B( t d t) = �B( t t t) = 1 (2.10)where empty circle means no particle, and �lled circle means one particle. If we de�ne�B(nxnynz) = nx � 2ny + nz, then (� + 49�) is a physically equivalent interaction thatis an m-potential, the ground con�gurations being those that contain only patterns d t d,d d tand t d d(there are six ground con�gurations in two dimensions).An important class of (stable) interactions that we shall often consider is the onesthat act only on blocks, and that satisfy a Peierls condition. Let R0 2 12N; we de�ne theR0-neighbourhood U(x) of x 2 Z� asU(x) = (fy 2 Z� : jy � xj 6 R0g if R0 2 Nfy 2 Z� : jy � (x1 + 12 ; : : : ; x� + 12)j 6 R0g otherwise. (2.11)A periodic interaction � belongs to the class C(R0; G;�0; a; b), R0 2 12N, G � 
 is a �niteset of periodic con�gurations, �0 > 0, a 2 R, b > 0, if it sati�es the following properties :� �A = 0 if A 6= U(x) for all x 2 Z�.� For all g 2 G, �U(x)(gU(x)) is independent of x 2 Z�; we write e(g) = �U(x)(gU(x)),and de�ne e�0 = ming2G e(g).� (Peierls condition) If nU(x) 6= gU(x) for all g 2 G,�U(x)(nU(x)) > e�0 +�0: (2.12)� Finally, the potential is stable�U(x)(nU(x)) > e�0 + bjnxj � a: (2.13)The classes are such that C(R0; G;�0; a; b) � C(R0; G;�00; a0; b0)if �0 > �00, a 6 a0 and b > b0. Furthermore, if � 2 C(R0; G;�0; a; b), and R00 > R0,then the interaction �0�0A(nA) = (�U(x)(nU(x)) if A is the R00-neighbourhood of some x 2 Z�0 otherwisebelongs to C(R00; G;�0; a; b) and is physically equivalent to �. In the sequel, we shall oftenwrite �x instead of �U(x), for an interaction belonging to such a class.If the single site phase space is �nite, condition (2.13) is no longer useful, and wedenote by C(R0; G;�0) the space of interactions that satisfy all the conditions, except(2.13).



16 2. MATHEMATICAL MODELIZATION2.3. Quantum interactions. We �rst have to embed classical systems in a quan-tum framework. The Hilbert space is constructed from quantum con�gurations, and thequantum equivalent V = (VA) of a classical interaction � = (�A) is a collection ofoperators VA : D(VA) � HA !HAVA jnAi = �A(nA) jnAi:Quantum equivalents of classical interactions are diagonal operators in the basis ofclassical con�gurations. The domain of VA is not necessarily the whole of HA, VA mayeven not be densely de�ned | we want to accept models with hard-cores. It is howeveruseful to notice that (�A) is bounded below, see (2.13), and therefore the operators e��VA ,with � > 0, are de�ned everywhere in HA.Next we de�ne creation and annihilation operators on the basis of occupation numbersof H�.� Bosons:cyx� jn�i = pnx� + 1 jn0�i with n0y�0 = ny�0 + �xy���0cx� jn�i = pnx� jn0�i with n0y�0 = ny�0 � �xy���0 : (2.14)Creation and annihilation operators satisfy the commutation relations[cyx;�; cyy;�0 ] = 0; [cx;�; cy;�0 ] = 0; [cx;�; cyy;�0 ] = �x;y��;�0 :� Fermions: we �rst have to choose an order on � and �; this induces an order on�� � by (y; �0) < (x; �) () y < x; or y = x and �0 < �:Thencyx� jn�i = (1� nx�)(�1)P(y;�0)<(x;�) ny�0 jn0�i with n0y�0 = ny�0 + �xy���0cx� jn�i = nx�(�1)P(y;�0)<(x;�) ny�0 jn0�i with n0y�0 = ny�0 � �xy���0 : (2.15)We have the anticommutation relationsfcyx;�; cyy;�0g = 0; fcx;�; cy;�0g = 0; fcx;�; cyy;�0g = �x;y��;�0 :In order to have correlation functions or order parameters, we need a notion of localoperator. K is a local operator with connected support SuppK � Z�, if jSuppKj <1and it satis�es the following conditions, for fermions or bosons, respectively:� (Fermions) K is a �nite sum of even monomials in creation and annihilation oper-ators of fermionic particles at a given site, i.e.K = X(x1;�1);:::;(x`;�`)(y1;�01):::;(ym;�0m) kf(xi;�j)gcyx1;�1 : : : cyx`;�`cy1;�01 : : : cym;�0mwith (xi; �j); (yi; �0j) 2 SuppK � �; `+m must be an even number.� (Spins or bosons)K is densely de�ned inH� (� � SuppK), and the matrix elementhn�jK jn0�iis zero whenever n�nSuppK 6= n0�nSuppK and otherwise it depends on nSuppK andn0SuppK only.



2. MATHEMATICAL DEFINITIONS 17We denote with L the space of all bounded local operators. Notice that in the case ofbosonic systems, the creation operators cyx do not belong to L, neither do the operatorsnumber of particles at a given site. Since we would like to consider their expectationvalues, we introduce the space L(c), c < 1, of moderately o�-diagonal local operators,which satisfy Xn02
 jhn0jK jnij 6 CK ecjnSuppK j (2.16)for all n 2 
. Notice that L(c = 0) = L.A quantum interaction is a collection of local operators (TA), A = (A; �), withsupport A � Z� connected, and � represents additional degrees of freedom, as for instancespins.4 (By abuse of notation, we consider that for any � � A, TA : H� ! H�.) We writeTA + X� TA: (2.17)In view of the space-time representation for quantum systems, see Chapter 7, we call A aquantum transition.When the single site phase space is �nite, a convenient de�nition for the norm kTkof a quantum interaction (TA) is5kTk = supA�Z�h maxnA;n0A2
A��hn0AjTA jnAi��i1=jAj (2.18)This is a norm, provided the multiplication of an interaction T by a scalar � is de�ned tobe (�T )A = �jAjTA. In this case the space of quantum interactions is no vector space, butit does not matter. Let Q the space of interactions with �nite norm.In the case of boson systems, this de�nition is inconvenient, already because hoppingterms TA = cyxcy do not belong to Q. Therefore we de�ne the following normkTk = supA�Z�� supnA2
An Xn0A2
A jhnAjTA jn0AijjnAj+ 1 ; Xn0A2
A jhnAjTA jn0Aijjn0Aj+ 1 o�1=jAj (2.19)and we denote by Qb the space of interactions for which this norm is �nite. A hoppingterm of the form (txycyxcy)x;y2Z� with jtxyj 6 e�
jx�yj belongs to Qb.6Notice the inequalitiesXA:A=B Xn0B2
B 1jnB j+ 1 jhnBjTA jn0Bij 6 kTkjBj (2.20)XA:A=B Xn0B2
B 1jn0B j+ 1 jhnBjTA jn0Bij 6 kTkjBj (2.21)for any B � Z� and nB 2 
B. If kTk < 1, each operator TA is densely de�ned in HA(and hence in H�, � � A); we denote by Q the space of quantum interactions with �nitenorm.4These degrees of freedom may coincide with the set �.5In the sequel, we should not mix up the norm kTk of an interaction T , with the operator norm kTAkof the local operator TA.6Stricto sensu it does not, because supports are not necessarily connected. However, it is clear thatone can rewrite it into another interaction with connected supports.



18 2. MATHEMATICAL MODELIZATION2.4. Phase diagrams. So far we have considered only one thermodynamic parame-ter, namely the inverse temperature �. But other quantities such as the external magnetic�eld or the chemical potential have to be taken into account. Notice that a non zero mag-netic �eld modi�es the Hamiltonian; the chemical potential is present whenever we areconsidering the grand-canonical ensemble, and a common trick consists in rede�ning a newHamiltonian by substracting to the ancient one the number of particles times the chemicalpotential, and to go to the canonical ensemble. The Hamiltonian is then a function ofthese two thermodynamic parameters:H�(n�) = XA���A(nA)� hXx2�Sx(nx)� �Xx2�Nx(nx)� XA���h;�A (nA):Consequently let � = (�1; : : : ; �p�1) 2 U be a family of external �elds where U is anopen subset of Rp�1 . The interaction � is now supposed to depend on �.Let us write G� = G�(�) the set of periodic ground states of �� and GU = [�2UG�.We suppose that jGU j = p, with 1 6 p < 1; we note GU = fg(1); : : : ; g(p)g. Thezero-temperature phase diagram of �(�) is the decomposition of U :U = [Q�GUM(Q)with M(Q) the set of � where the set of ground states is Q, i.e.M(Q) = f� 2 U : G� = Qg:Remark that M(?) = ? and M(Q) \M(Q0) = ? if Q 6= Q0.An alternative description of the zero-temperature phase diagram, which admits ageneralization to low temperatures in the framework of the Pirogov-Sinai theory, is tode�ne, for each g 2 GU : M(g) = f� 2 U : e�(g) = ming02GU e�(g0)g: (2.22)Then7 M(Q) is the subset of U where all g 2 Q are ground states, and all g =2 Q havestrictly bigger energy; that is,M(Q) = \g2QM(g) n [g=2QM(g): (2.23)This phase diagram is said to be regular, or alternatively to satisfy the Gibbs phaserule, if the function U ! boundary of the positive octant of Rp (2.24)� 7! �e�(g(1))� e�0 ; : : : ; e�(g(p))� e�0 � (2.25)is a homeomorphism whose image contains a neighbourhood of the origin of Rp . In otherwords, the zero-temperature phase diagram has the following structure: there exist �0 2 Uwhere all the energies are equal, p di�erent lines where (p� 1) con�gurations are groundstates, 12p(p�1) 2-dimensional surfaces with (p�2) ground states, : : : , p (p�1)-dimensionalmanifolds where only one state has minimum energy. We have the following relations forthe closures of the manifolds: M(Q) \M(Q0) =M(Q [Q0).7One should not mixM(g) withM(fgg); actually,M(fgg) �M(g) is the set of external �elds � whereg is unique ground state.



3. THERMODYNAMIC STATES 19Actually we shall need a stronger condition than regularity of the phase diagram,namely that the �i removes the degeneracy at �0 linearly: we suppose that there exists�0 2 U where e�0(g) = e�00 for any g 2 GU , and that the matrix of derivatives� @@�i �e�(g(j))� e�(g(p))��1 6 i;j 6 p�1 (2.26)exists and has non zero determinant for all � 2 U . If an interaction �� satis�es thiscondition, we say that its zero-temperature phase diagram is linearly regular.Our main goal is to show the stability of such phase diagrams when the temperatureis small but non zero, as well as when a quantum perturbation is added to the interaction.The p ground states have to be replaced by p phases, or thermodynamic states, thatrepresent small deformations of these ground states, in a sense that will be given moreprecise meaning later. 3. Thermodynamic statesWe de�ne thermodynamic states starting from �nite systems, and then taking thethermodynamic limit.Let us start with free boundary conditions. The canonical partition function attemperature � is Z� = TrH� exp��� XA��(TA + VA)�: (2.27)This allows to de�ne the free energy of the system, namelyf = � lim�%Z� 1�j�j logZ� (2.28)(if the limit exists).3.1. Periodic boundary conditions. Let L 2 N; we de�ne � per(L) = Z�=(LZ)�.The Hamiltonian with periodic boundary conditions isH��per(n�) = XA��per�A(nA): (2.29)The notion of physical equivalence is simpler in the case of periodic systems. Indeed,two �nite-range interactions � and 	 (with range smaller than the size of lattice) arephysically equivalent if XA��per��A(nA)�	A(nA)� = j� perjconst (2.30)for any n.3.2. Boundary conditions with boundary operators. In the classical case, givenan interaction �, a usual way to introduce boundary conditions is to take a �xed con�g-uration g 2 
, and for any �nite � 2 Z� to de�ne the HamiltonianH(0)g� (n�) = XA���A(nA) + XA 6��;A\� 6=?�A(nA\�gAn�):



20 2. MATHEMATICAL MODELIZATIONIn words, the idea is to freeze the con�guration outside of �, and to take into account theinteractions across the boundary. The same can be described by introducing a boundaryinteraction @�;�;g: @�;�;gA (nA) = XA0 6��;A0\�=A�A0(nAgA0n�); (2.31)then H(0)g� is given by the Hamiltonian with free boundary conditions, plus this boundaryinteraction, namely H(0)g� = H(0)� + XA�� @�;�;gA (nA): (2.32)If � is of �nite range, only terms close to the boundary contribute in the second sum.Such a generalization of boundary conditions was considered in [BLP 1979].In a sense the boundary interaction modelizes much better the boundary of a physicalsystem than interactions with con�gurations outside of �, which do not exist in reality.However, it should be clear that boundary conditions are only a mathematical tool usefulfor the description of phase coexistence, and their physical interpretation should not beoverstressed.A natural generalization of these classical boundary conditions is quantum ones. Herewe would replace the classical boundary interaction by quantum operators. Good examplesshould be, for bosons, @� = Xx2@1�(cyx + cx); (2.33)and for fermions, @� = Xx;y2@1�jx�yj 6 r(cyxcyy + cxcy): (2.34)As in the classical situation, these operators break some symmetries of the system, al-though the symmetries are now di�erent. The total number of particles is no more aconstant, which means that the system is not necessarily gauge invariant. In this case,the system displays features of super
uidity or superconductivity. Their order parame-ters are8 hcy0i (super
uidity for bosonic systems), see Penrose and Onsager [PO 1956], orhcy0"cy0#i (superconductivity in some fermionic systems) [Yang 1962]. With free, periodicor classical boundary conditions, these order parameters are obviously zero if the Hamil-tonian conserves the total number of particles. However, they may di�er from zero withquantum boundary conditions. If they are non zero (in the thermodynamic limit), theheuristical meaning is that a particle created at site 0 travels and eventually disappears atthe far boundary. It is therefore reasonable to expect special transport and conductivityproperties in systems with such equilibrium states.3.3. States. A thermodynamic state, or state, or phase, in Quantum StatisticalPhysics is a linear, normalized, positive functional on the space of local operators. Let H8The operator cy0 is unbounded, and this may create technical di�culties. An alternative is to considerthe order parameter h(n0)� 12 cy0i.



3. THERMODYNAMIC STATES 21be a Hamiltonian. If for all local operators K 2 L the limithKi = lim�%Z� TrH� K e��H�TrH� e��H� (2.35)exists, we call h�i a Gibbs state at inverse temperature � and with free boundary condi-tions. Similarly, a Gibbs state with periodic boundary conditions is a limithKi per = lim�%Z� TrH� K e��H�perTrH� e��H�per (2.36)(provided it exists for all K 2 L).Finally, we de�ne Gibbs states with boundary interactions. For instance, h�ig is con-structed by considering �nite volumes Hamiltonians9 H�+@�;�;g where @�;�;g is given by(2.31).Phase coexistence and �rst-order phase transitions are present when the thermody-namic states are sensitive to boundary conditions. Actually, since the system jumps fromone phase to another when varying the corresponding thermodynamic parameter, it is alsosensitive to external perturbations; for instance, by slightly modifying this parameter. Weare lead to the notion of thermodynamic stability.A state h�iH , constructed with a Hamiltonian H, is thermodynamically stable iffor any P 2 Q, hKiH = lim�!0hKiH+�P (2.37)for all K 2 L.The link between boundary and thermodynamic stability should be the following.Conjecture.A state is thermodynamically stable i� it is insensitive to boundary conditions (i.e. tothe e�ect of a boundary operator).Another important notion is that of clustering. Namely, a thermodynamic state isexponentially clustering if for any two local observables K;K 0 2 L,jhKtx(K 0)i � hKihtx(K 0)ij 6 C(K;K 0) e�jxj=� (2.38)with constants � < 1 that depends on the state only, and C(K;K 0) < 1 that dependson the operators only. In other words, a state is exponentially clustering whenever allcorrelations decay exponentially quickly.Conjecture.A thermodynamically stable state is exponentially clustering.The converse of this conjecture is wrong. For instance, the \ + " phase of the Isingmodel below the critical temperature and with zero external magnetic �eld is exponentiallyclustering, but unstable with respect to a small negative magnetic �eld.External perturbations can break symmetries of the Hamiltonian, as may do boundaryconditions. The gauge invariance of a quantummodel can be broken by the �eldPx2�(cyx+cx) [Gin 1968]. The corresponding physical properties of the system should be that of asuper
uid.Extremal states of Classical Statistical Physics can be constructed as thermodynamiclimits of �nite systems with suitable boundary conditions. In the sequel we shall consider9More precisely, we consider the quantum equivalent of @�;�;g .



22 2. MATHEMATICAL MODELIZATIONsuch an approach with quantum models. However, when discussing the e�ect of quantum
uctuations, we shall be into technical troubles, and it simpli�es the task to considerexternal �elds and periodic boundary conditions. Pure states at a coexistence point willbe constructed by taking limits of thermodynamically stable states. This motivates thefollowing de�nition of pureness: a linear, normalized, positive functional h�i is a purestate if there exists P 2 Q such that� for all � 2 (0; �0], h�iH+�P is a thermodynamically stable Gibbs state;� h�i = lim�!0h�iH+�P .Notice that any thermodynamically stable state is pure. We call phase coexistence thesituation where two or more pure states exist for a given Hamiltonian, or a given external�eld.Let us end this chapter by mentionning the following standard convention on sumsand products, that is used throughout this thesis: Pn2? an + 0, Qn2? an + 1 (thisconvention makes partition functions of contour models simple and elegant).



CHAPTER 3Low temperature phases and stability of phase diagramsThis chapter summarizes the results for quantum lattice models proven throughoutthis thesis. Their common point is that all of them are obtained using the Duhamelrepresentation of a quantum system (see Section 1, Chapter 7) and the cluster expansion(Chapter 5). Some of them also rely on the Pirogov-Sinai theory (Chapter 6).1. High temperature phasesIt may seem bizarre to discuss high temperature phases in this chapter devoted to thelow temperatures, but high temperature expansions constitute a simple and nice illustra-tion of the use of cluster expansion, hence we introduce them in Chapter 5.Interactions between the particles are unimportant at high temperature, and thus weare left with a nearly ideal gas, whose physical state shows all the symmetries of thesystem. All this is known for more than 30 years, see e.g. [Dob 1968, Kunz 1978], : : :Concerning quantum systems, boson lattice systems were considered in [PY 1995].Theorem 3.1. Analyticity at high temperature.Let H be the Hilbert space constructed from the single site phase space 
 with j
j =S < 1. T� = (T�A) is a translation invariant quantum interaction that depends on aparameter � 2 U � Rs , such that� [T�A; T�A0 ] = 0 when A \A0 = ?;� hnAjT�A jn0Ai is analytic in �, for any A, n; n0;� PA3x kT�A k ecjAj <1 for a constant c > 2� + 1 + log 2i.Then the free energy f(�;�) = � 1� lim�%Z� 1j�j log Tr e��PA�� T�Aexists and is analytic in � and � in the domainn(�; �) 2 U � R+ : �XA3x kT�A k ecjAj < 1o:The corresponding Gibbs state exists in the thermodynamic limit, is thermodynamicallystable, pure and exponentially clustering.This result is obtained in Section 3 of Chapter 5.2. Quantum models with local interactionsWhen the (classical) interaction is only on-site, i.e.V �A = (V �x if A = fxg0 otherwise, (3.1)23



24 3. LOW TEMPERATURE PHASES AND STABILITY OF PHASE DIAGRAMSwith V �x : Hfxg !Hfxg, then the free energy is analytic in a domain where � and T� aresmall enough, independently of V �. Actually, the statement shows similarities with thehigh temperature case. Here, each site is almost isolated, and the free energy is close tothat of a system with only one site; no phase transition occurs, for the same reason thatthere are none in zero-dimensional systems.Theorem 3.2. Analyticity with local interactions.We consider a model with single site state space 
, j
j = S < 1, and HamiltonianH� = V � + T� where V � is an on-site interaction, and T� is translation invariant. Weassume that� [T�A; T�A0 ] = 0 when A \A0 = ?;� hnAjT�A jn0Ai is analytic in �, for any A, n; n0;� PA3x kT�A k ecjAj <1 for a constant c > 2� + 1 + log 2i+ log S.Then the thermodynamic limit of the free energy exists and is analytic in � and � in thedomain n(�; �) 2 U � R+ : �XA3x kT�A k ecjAj < 1o;and the corresponding Gibbs state exists in the thermodynamic limit, is thermodynamicallystable, pure and exponentially clustering.The proof combines Duhamel representation and cluster expansion, see Section 2,Chapter 7. The Hubbard model is an example of a Hamiltonian with on-site interaction;Theorem 3.2 establishes the existence of a paramagnetic phase in a domain �jtj < const (athalf �lling, one can improve this result by showing analyticity in a domain �t2=U < const[Uel 1998]); see Chapter 4 for more discussion. Another example is the Falicov-Kimballmodel, for which this statement was proved in [KL 1986] (as well as in the domain �t2=U <const). 3. Results of the quantum Pirogov-Sinai theoryWe consider in this section quantum models that consist in a classical interaction whichhas well-understood low temperature phase diagram, and a quantum perturbation. Weshow that the latter does not destroy the classical picture, i.e. that quantum 
uctuationsdo not play an important role. This amounts to say that the classical model is a goodapproximation for the description of the quantum system.Results in this direction start with Ginibre [Gin 1969] and Robinson [Rob 1969], whoproved long-range order in some spin systems. An important model is the Heisenbergone; if the coupling between neighbouring spins is anisotropic, i.e. if the coupling betweenthe spins in the z-direction, say, is stronger than the coupling in the directions x and y,Kennedy proved that there is long-range order at low enough temperature [Ken 1985].When the anisotropy is high, this result is a special case of our theorem below, but it doesnot cover the situation with weak anisotropy.A fermion model with nearest-neigbour couplings was studied in [LM 1993]; here the\classical term" is the antiferromagnetic Ising model, and the phases of the quantumsystems are shown to display chessboard features. All these results rely on the Peierlsargument, so that it is necessary that the phases are related by some symmetry. Inthe context of Classical Physics, the generalization of the Peierls argument to situationswithout such symmetry was achieved by Pirogov and Sinai [PS 1975, Sin 1982] and bearsnow the name of its authors. Its application to quantum spin systems was suggested



3. RESULTS OF THE QUANTUM PIROGOV-SINAI THEORY 25in [Pir 1978], but was realized only twenty years later [BKU 1996, DFF 1996]. Fermionsystems present an additional technical di�culty; in the contour representation of thequantum system, one has to deal with a sign arising from the anticommutation relations,and it is necessary to show its factorization with respect to the contours. This factorizationwas proved in [DFF 1996], so that their results also apply to fermion systems.Here we present a theorem valid for spin, fermion, and boson systems, that is sum-marizing | and slightly extending | results of [BKU 1996, DFF 1996, BKU 1997]. Itfollows from Chapters 6 and 7.Theorem 3.3. Stability of the phase diagram against quantum 
uctuations.Let �, the dimension of the system, be bigger or equal to 2.1 We consider a HamiltonianH� = T� + V �, depending on a parameter � 2 U � Rp�1 , where V � is the quantumequivalent of a classical interaction �� 2 C(R0; G�;�0; a; b), with j[�2UG�j = jGU j = p <1, and with linearly regular zero-temperature phase diagram. T� 2 Qb is a di�erentiablequantum perturbation. Then for any � > 0, there exist �0 < 1 and "0 > 0 such that if� > �0 and kT�k+Pp�1i=1 k @@�iT�k 6 "0 for all �, there exist p functions f�(g), g 2 GU ,such that� if Re f�(g0) = ming2GU Re f�(g), f�(g0) is the (in�nite volume) free energy of thesystem.� The matrix of derivatives� @@�i �Re f�(g(j))�Re f�(g(p))��1 6 i;j 6 p�1exists and has an inverse matrix that is uniformly bounded in �.� For all local operators K 2 L(0), and if Re f�(g0) = ming2GU Re f�(g), the expec-tation value (with classical boundary conditions g0)hKi�;�g0 = lim�%Z� TrK e��H��;g0Tr e��H��;g0exists, and is close to the value of K in the ground state g0: there exists CK < 1such that ��hKi�;�g0 � hg0jK jg0i�� 6 CK�:This describes a pure state with exponential decay of correlations, i.e. there exists �such that for all K;K 0 2 L(0),��hKtxK 0i�;�g0 � hKi�;�g0 htxK 0i�;�g0 �� 6 CK;K0 e�jxj=� ;with CK;K0 <1.� If g0 is the unique minimum of fRe f�(g)g, the state h�i�;�g0 is thermodynamicallystable.In the case of boson systems, we would like to have statements concerning the expecta-tion value of local operators such as the operator number of particles in a subset A, or theoperator creation of a particle at site x. But NA; cyx =2 L(0), since they are not bounded.To obtain a statement for local operators of L(c), we need a further assumption, namelythat the quantum interaction conserves the number of particles.1One-dimensional models could be included, but only at � !1. The reason why this does not holdat �nite temperature is that the system may create arbitrarily large excitations having �xed energy cost.



26 3. LOW TEMPERATURE PHASES AND STABILITY OF PHASE DIAGRAMSTheorem 3.4. Bosonic states.Under the same assumption as in Theorem 3.3, and supposing moreover that T satis�es[TA; NA] = 0 for any A, then if Re f�(g0) = ming2GU Re f�(g), the expectation value ofK 2 L(c) hKi�;�g0 = lim�%Z� TrK e��H��;g0Tr e��H��;g0exists, and is close to the value of K in the ground state g0. The state h�i�;�g0 describes apure state with exponential decay of correlations.This result is true for all c, but not uniformly: constants �0 and "0 depend on c.4. E�ective interactions due to quantum 
uctuationsWhen the classical interaction has an in�nite number of ground states, the quantumperturbation may stabilize some of them. Examples of quantum lattice models with de-generate classical ground states are Hubbard and Falicov-Kimball models.2 The �rst oneis certainly the most interesting, but the latter allows rigorous studies. Kennedy andLieb succeeded in applying the Peierls argument to exhibit a region of low temperatureswhere the quantum 
uctuations are more important than the thermal ones [KL 1986]. Themethod was generalized in [LM1 1994, LM2 1994]. In the latter the degrees of freedomcan be continuous.A general method to study the low temperature behaviour of these systems was re-cently proposed by Datta, Fern�andez, Fr�ohlich and Rey-Bellet [DFFR 1996]. The idea isto replace the original Hamiltonian by a unitary equivalent one, that is diagonal up tonegligible terms, and that has only a �nite number of ground states. These are stable byvirtue of Pirogov-Sinai theory.The approach of [KU 1998], that we consider here, is di�erent, although it leads tocomparable results. We show that \quantum 
uctuations" act as a classical e�ectivepotential. One has then to study the ground states of both the original interaction andthe e�ective potential, and whenever this new classical model satis�es a suitable Peierlscondition, and that there is \no quantum instability" (see below), its ground states arestable with respect to thermal, and other quantum, 
uctuations.4.1. The model. Di�erent assumptions are needed. First, we restrict ourselves tosystems with �nite single site phase space, i.e. j
j = S < 1. The extension to latticeboson systems should be straightforward, but it is nevertheless a hard task that is notdone so far. Second, since we are unable to include boundary conditions, we consider aperiodic lattice � per. As before, the dimension � of the system is bigger or equal to 2.The Hamiltonian of the system is, as before, given by a classical interaction � and aquantum perturbation T 2 Q.We suppose that a �xed collection of reference con�gurations G � 
 is given3 and welet �A = [x2AU(x) (recall that U(x) is the R0-neighbourhood of x) and GA = fgA : g 2 Gg,A � Z�. G may be an in�nite set.2Reviews on these models include [Lieb 1993] for the Hubbard model, and [GM 1996] for the Falicov-Kimball model.3In some situations G is simply the set of all ground con�gurations of �. When discussing the fullphase diagram, however, we will typically extend the interaction � to a class of interactions by addingcertain \external �elds". The set G then will actually play the role of ground states of the interaction withparticular values of external �elds (the point of maximal coexistence of the ground state phase diagram).



4. EFFECTIVE INTERACTIONS DUE TO QUANTUM FLUCTUATIONS 27We assume that the local energy gap of excitations is uniformly bounded from below,while the spread of local energies of reference states is not too big:Assumption 1. Classical interaction.� is a block interaction with �nite range R0 2 12N and is periodic with period `0 <1.There exists a set G � 
, possibly in�nite, such that for all nU(x) =2 GU(x),�x(nU(x))�maxg2G �x(gU(x)) > �0 (3.2)with �0 > 0, and maxg;g02G���x(gU(x))� �x(g0U(x))�� 6 �0; (3.3)�0 <1. Furthermore, we assume the following extension property on the set of referencestates G: if, for a connected A � Z�, a con�guration n is such that nU(x) 2 GU(x) for anyx 2 A, then n �A 2 G �A.In view of the de�nition of the e�ective potential, it is useful to note the followingproperty.Property. Let � satisfy Assumption 1, R be such that R� 6 �0=�0, and A � Z�with diamA 6 R. Then any pair of con�gurations g �A 2 G �A and n �A =2 G �A, withn �AnA = g �AnA, satis�es the lower boundXx2Ah�x(nU(x))� �x(gU(x))i > R���0: (3.4)Proof. Since n �A =2 G �A, there exists at least one site x 2 A such that nU(x) =2 GU(x).From the assumption, this implies thatXx2Ah�x(nU(x))� �x(gU(x))i > �0 � Xy2A;y 6=x �0:Using jAj 6 R� , we obtain the property.4.2. The e�ective potential. It is actually a cumbersome task to write down acompact formula for the e�ective potential in the general case. A lot of notation hasto be introduced, and one pays for the generality by the fact that the resulting formul�look rather obscure; nevertheless, the logic behind the following de�nitions and equationsappears rather naturally along the steps in Chapter 8. In the next subsection we shalldiscuss a special case where the e�ective interaction is due to at most four transitionsresulting in much simpler and straightforward formul�. We would like to stress thatfor typical concrete models this is entirely su�cient. The reader might thus skip thepresent subsection on the �rst reading and consider only the simpli�ed situation of thenext subsection.The real meaning of the next de�nitions [in particular (3.7)] will appear more clearlyonly in Chapter 8, but, in the general case, we cannot leave it aside. First of all, weassume that a list S of sequences of quantum transitionsA is given to represent the leadingquantum 
uctuations. The particular choice of S depends on properties of the consideredmodel. Often the obvious choice like \any sequence of transitions not surpassing a givenorder" is su�cient. In the general case, certain conditions (speci�ed later in Assumption



28 3. LOW TEMPERATURE PHASES AND STABILITY OF PHASE DIAGRAMS3) involving S are to be met. For any gA 2 GA, the e�ective potential 	 is de�ned toequal	A(gA) = � Xn > 1 1n! Xk1;:::;kn > 2 X(A11;:::;A1k1 ;A21;:::;Ankn )2S[i;j �Aij=AnYi=1� Xni;1A ;:::;ni;ki�1A =2GA I(Ai1; : : : ; Aiki ;ni;1A g�nA; : : : ; ni;ki�1A g�nA)h kiYj=1hni;j�1A jTAij jni;jA iiZ�1<� i1<:::<� iki<1 d� i1 : : : d� ikihki�1Yj=1 e�(� ij+1�� ij )Px2Ai [�x(ni;jU(x))��x(gU(x))] i�I�mini;j � ij < 0 and maxi;j � ij > 0�maxi;j � ij �mini;j � ij 'T(B1; : : : Bn): (3.5)To begin to decode this formula, notice �rst that the second sum is over all sequences(A11; : : : ;A1k1 ;A21; : : : ;Ankn) of transitions that are in the list S and are just covering theset A, [i;j �Aij = A. The sum in the braces (for a given i = 1; : : : ; n) is taken over collectionsof con�gurations ni;1A ; : : : ; ni;ki�1A =2 GA with ni;0A � ni;kiA � gA, while the integral is takenover \times" attributed to transitions, with the energy term in the exponent taken overthe set Ai = [kij=1Aij , �A = [x2AU(x).Finally, there are some restrictions on the sums and integrals encoded in functionsI�mini;j � ij<0 and maxi;j � ij>0�maxi;j � ij�mini;j � ij , 'T(B1; : : : Bn), and I(Ai1; : : : ; Aiki ;ni;1A g�nA; : : : ; ni;ki�1A g�nA).The easiest is the �rst one. One just assumes that the interval between the �rst and thelast of concerned \times" contains the origin and the integrand is divided by the lengthof this interval. The function 'T(B1; : : : Bn) in terms of the sets Bi = Ai � [� i1; � iki ] �Z� � [�1;1], i = 1; : : : ; n, is the standard factor from the theory of cluster expansionsde�ned as'T(B1; : : : ; Bn) = (1 if n = 1PGQe(i;j)2G�� I�Bi [Bj is connected �� if n > 2with the sum over all connected graphs G of n vertices. Connectedness of a set B �Z�� [�1;1] is de�ned by combining connection in continuous direction with connectionin slices fxj(x; �) 2 Bg � Z� through pairs of sites of distance one. The most di�cult tode�ne is the restriction given by the function I that characterizes whether the collectionof transitions is connected, in some generalized sense, through the intertwining con�gura-tions. A consolation might be that in lowest orders it is always true. Namely, wheneverk 6 5 and Qkj=1hnj�1A jTAj jnjAi 6= 0,I(A1; : : : ; Ak;n1Ag�nA; : : : ; nk�1A g�nA) = (1 if [j �Aj is connected0 if [j �Aj is not connected. (3.6)(When Qkj=1hnj�1A jTAj jnjAi = 0, the value of I(�) is not relevant.) To de�ne it in ageneral case, consider A1; : : : ; Ak � Z� and n1; : : : ; nk�1 2 
Z�. Taking �A = [x2AU(x)



4. EFFECTIVE INTERACTIONS DUE TO QUANTUM FLUCTUATIONS 29and E(n) = fx 2 � : nU(x) 6= gU(x) for any g 2 Gg, we consider the set B̂(0) � Z�+1,B̂(0) = k[j=1h �Aj � f2j � 2gi[ k�1[j=1hE(nj)� f2j � 1gi:Think of layers, one on top of another | con�gurations on odd levels interspersed withtransitions on even levels. The set B̂(0) decomposes into connected components, B̂(0) =[` > 1 B̂(0)` . To any B̂(0)` , de�ne the box ~B(0)` � Z�+1 as the smallest rectangle contain-ing B̂(0)` . Then let B̂(1) = [` > 1 ~B(0)` ; decompose into connected components B̂(1) =[` > 1 B̂(1)` , and repeat the procedure until no change occurs any more, i.e. until B̂(m) =[` > 1 ~B(m)` . The function I characterizes whether this �nal set, the result of the aboveconstruction, is connected or not,I(A1; : : : ; Ak;n1; : : : ; nk�1) = (1 if B̂(m) is connected0 otherwise. (3.7)4.3. Quantum 
uctuations with less than four transitions. The equation (3.5)for the e�ective potential is hard to handle in general case. However, in many situations itis enough to consider only small sequences of less than four quantum transitions to de�neit. We rewrite in this section the explicit formul� for the e�ective potential in such a case.We assume thus that a list S of sequences of quantum transitions A, containing atmost 4 transitions, is given to represent the most important quantum 
uctuations. Let usdecompose S = S(2) [ S(3) [ S(4), with S(k) denoting the list of sequences with exactly ktransitions, and write 	 = 	(2) +	(3) +	(4): (3.8)Here 	(k) is the contribution to the e�ective potential due to the 
uctuations from S(k).Let �A(nA; gA) = Xx;U(x)�Ah�x(nU(x))� �x(gU(x))i:Then, for any connected A � Z� and gA 2 GA, we de�ne	(2)A (gA) = � X(A1;A2)2S(2)�A1[ �A2=A XnA =2GA hgAjTA1 jnAihnAjTA2 jgAi�A(nA; gA) ; (3.9)	(3)A (gA) = � X(A1;A2;A3)2S(3)�A1[ �A2[ �A3=A XnA;n0A =2GA hgAjTA1 jnAihnAjTA2 jn0Aihn0AjTA3 jgAi�A(nA; gA)�A(n0A; gA) : (3.10)The expression for 	(4) becomes more complicated (we shall see in Chapter 8 that clustersof excitations are actually occurring here),	(4)A (gA) = � X(A1;A2;A3;A4)2S(4)�A1[ �A2[ �A3[ �A4=A � XnA;n0A;n00A =2GA hgAjTA1 jnAihnAjTA2 jn0Aihn0AjTA3 jn00Aihn00AjTA4 jgAi�A(nA;gA)�A(n0A;gA)�A(n00A;gA)� 12 XnA;n0A =2GA hgAjTA1 jnAihnAjTA2 jgAihgAjTA3 jn0Aihn0AjTA4 jgAi�A1 (nA;gA)+�A2 (n0A;gA) n 1�A1 (nA;gA) + 1�A2 (n0A;gA)o2�:(3.11)



30 3. LOW TEMPERATURE PHASES AND STABILITY OF PHASE DIAGRAMSAbove we denoted A1 = �A1 [ �A2 and A2 = �A3 [ �A4. All the denominators are strictlypositive.These equations simplify further if TA is a monomial in creation and annihilationoperators; indeed in the sums over intermediate con�gurations only one element has to betaken into account.Notice, �nally, that the diagonal terms in T are not playing any role in the previousde�nitions; we consider that they are small, since otherwise we would have included theminto the diagonal potential.4.4. Stability of the dominant states. The aim of rewriting a class of quantumtransitions in terms of the e�ective potential was to get a control over stable low temper-ature phases. To this end, the three conditions, expressed �rst only vaguely and then inprecise terms in the following Assumptions 2, 3, and 4, must be met. Namely, we supposethat� the Hamiltonian corresponding to the sum �+	 of the classical (diagonal) and ef-fective interactions has a �nite number of ground con�gurations, and its excitationshave strictly positive energy;4� the list S contains all the lowest quantum 
uctuations;� there is no \quantum instability"; the transition probability from a \ground state" gto another \ground state" g0 is small compared to the energy cost of the excitations.Each component of the e�ective interaction 	A is a mapping GA ! R; let us �rstextend it to 
A ! R by putting 	A(nA) = 0 if nA =2 GA. To give a precise meaning tothe �rst condition, we suppose that a �nite number of periodic reference con�gurationsD � G is given such that the interaction �+	 satis�es the Peierls condition with respectto D. We choose a formulation in which it is very easy to verify the condition and, inaddition, it takes into account the fact that the con�gurations from D are not necessarilytranslation invariant. Namely, we will formulate the condition in terms of a potential �that is equivalent to �+	 and is chosen in a suitable way. Of course, in many particularcases this is not necessary and the condition as stated below is valid directly for � + 	.However, in several important cases treated in Chapter 4, the interaction � + 	 turnsout not to be so called m-potential and the use of the equivalent m-potential � not onlysimpli�es the formulation of the Peierls condition, but also makes the task of its veri�cationmuch easier.Assumption 2. Peierls condition.There exist a �nite set of periodic con�gurations D � G with the smallest commonperiod L0, a constant � such that � > kTkk for some �nite constant k, and a periodicinteraction � (with period `0) that is physically equivalent to �+	 such that the followingconditions are satis�ed. The interaction � is a block interaction that belongs to C(R;D;�),where the range R is �nite5 and is such thatR� 6 �0=�0; (3.12)with the constants �0 and �0 determined by the interaction � in Assumption 1. Excitationswith respect to G and D are separated by gaps 12�0 and � respectively:4Again, when exploring a region of phase diagram at once, we have a �xed �nite set of reference con-�gurations that, strictly speaking, turn out to be ground con�gurations of the corresponding Hamiltonianfor a particular value of \external �elds". See below for a more detailed formulation.5We will suppose, taking larger R if necessary, that it is larger or equal to the range R0 of �, as wellas to the range of the e�ective interaction 	 and to L0.



4. EFFECTIVE INTERACTIONS DUE TO QUANTUM FLUCTUATIONS 31� for any x 2 � and any n with nU(x) =2 GU(x), we have�x(nU 0(x))�maxg2G �x(gU 0(x)) > 12�0;� for any x 2 � and any n with nU 0(x) =2 DU 0(x), we have�x(nU 0(x))�mind2D �x(dU 0(x)) > �:The following assumption is a condition demanding that the list S should contain alltransitions that are relevant for the e�ective potential. We de�nem(TA1 ; : : : ; TAk) = maxg2G maxn1;:::;nk�1 =2G jhgjTA1 jn1ihn1jTA2 jn2i : : : hnk�1jTAk jgij: (3.13)Assumption 3. Completeness of the set of quantum transitions.There exists a function b1(�) with lim�!0 b1(�) = 0 such that for any sequence (A1; : : : ;Am) =2S with connected [mi=1 �Ai one hasm(TA1 ; : : : ; TAk1 )m(TAk1+1 ; : : : ; TAk2 ) : : :m(TAkn�1+1 ; : : : ; TAm) 6 b1(kTk)�:Finally, we have a condition assuring that there is no quantum instability.Assumption 4. Absence of quantum instability.There exists a function b2(�) with lim�!0 b2(�) = 0 such that for any sequence (A1; : : : ;Am),and any g; g0 2 G, g 6= g0, one has���hgjTA1 : : : TAm jg0i��� 6 b2(kTk)�:Our �rst result concerns the existence of the thermodynamic limit for the state underperiodic boundary conditions. Taking L0 to be the smallest common period of periodiccon�gurations from D, we always consider in the following the limit over tori � % Z�whose sides are multiples of L0 and `0.Theorem 3.5. Thermodynamic limit.Suppose that the Hamiltonian is H = T + V , T 2 Q, and satis�es the Assumptions1{4. Then there exist constants "0 > 0 and �0 = �0(�) (depending on �; S;R; `0) suchthat the limit hKi per� = lim�%Z� TrK e��H per�Tr e��H per� (3.14)exists whenever kTk 6 "0, � > �0, and K is a local observable.Notice the logic of constants in the theorem above (as well as in the remaining twotheorems stated below). We �rst choose "0. Then, for any kTk 6 "0 one can choose �0(depending on � that is determined in terms of T through the e�ective potential 	) suchthat the claim is valid for the given T and any � > �0(�). With kTk ! 0 we may haveto go to lower temperatures (higher �) to keep the control. Of course, if � does not vanishwith vanishing kTk (i.e. Assumption 2 is valid for � alone) as was the case in Theorem3.3, one can choose the constant �0 uniformly in kTk.If there are coexisting phases for a given temperature and Hamiltonian, the state h�i per�will actually turn out to be a linear combination of several pure states. A standard wayhow to select such a pure state is to consider a thermodynamic limit with a suitablychosen �xed boundary condition. In many situations to which the present theory shouldapply, this approach is not easy to implement. The classical part of the Hamiltonian mightactually consist only of on-site terms and to make the system \feel" the boundary, the



32 3. LOW TEMPERATURE PHASES AND STABILITY OF PHASE DIAGRAMStruly quantum terms must be used. One possibility is, of course, to couple the systemwith the boundary with the help of the e�ective potential. The problem here is, however,that since we are interested in a genuine quantum model, we would have to introduce thee�ective potential directly in the �nite volume quantum state. Expanding this state, ina similar manner as it will be done in Chapters 7{8, we would actually obtain a new,boundary dependent e�ective potential. One can imagine that it would be possible tocancel the respective terms by assuming that the boundary potential satis�es certain\renormalizing self-consistency conditions". However, the details of such an approachremain to be clari�ed.Hence we prefer to consider only periodic boundary conditions, and to talk aboutthermodynamically stable states.Theorem 3.6. Pure low temperature phases.If the Hamiltonian is H = T+V , with T 2 Q, and if the Assumptions 1{4 are satis�ed,then for any � > 0, there exist "0 > 0 and �0 = �0(�) (depending on �; S;R; `0) such thatif kTk 6 "0 and � > �0, there exists for every d 2 D a function f�(d) such that the setQ = fd 2 D; Re f�(d) = mind02D Re f�(d0)g characterizes the set of pure phases. Namely,for any d 2 Q:a) The function f�(d) is equal to the free energy of the system, i.e.f�(d) = � 1� lim�%Z� 1j�j log Tr e��H per� :b) There exists a pure state h�id�. Moreover, it is close to the state jd�i in the sensethat for any bounded local observable K and any su�ciently large �, one has���hKid� � hd�jK jd�i��� 6 �jSuppKjkKk:c) There is an exponential decay of correlations in the state h�id�, i.e. there exists aconstant �d > 0 such that���hKK 0id� � hKid�hK 0id���� 6 jSuppKjjSuppK 0jkKkkK 0k e� dist(SuppK;SuppK0)=�dfor any bounded local observables K and K 0.d) The state h�i per� is a linear combination of the states h�id�, d 2 Q, with equal weights,hKi per� = 1jQjXd2QhKid�for each local observable K.e) If Q = fdg, the states h�id� and h�i per� are identical, and they are thermodynamicallystable.4.5. Phase diagram. We now turn to the phase diagram at low temperatures. Letp be the number of dominant states, i.e. p = jDj. To be able to investigate the phasediagram, we suppose that p � 1 suitable \external �elds" are added to the HamiltonianH per� . Or, in other words, we suppose that classical potential � and quantum interactionT depend on a vector parameter � = (�1; : : : ; �p�1) 2 U , where U is an open set of Rp�1 ,and that the zero-temperature phase diagram of � + 	 is linearly regular.Assumption 5. Phase diagram of the e�ective potential.



4. EFFECTIVE INTERACTIONS DUE TO QUANTUM FLUCTUATIONS 33� and T are di�erentiable with respect to � and there exists a constant M <1 suchthat maxnU(x)2
U(x)��� @@�i�x(nU(x))��� 6 Mfor all x 2 Z�, and kTk+ p�1Xi=1


 @T@�i


 6 Mfor all � 2 U .Further, there exists a point �0 2 U such thate�0(d) = e�0(d0) for all d; d0 2 D;and the inverse of the matrix of derivatives� @@�i �e�(dj)� e�(dp)��1 6 i;j 6 p�1has a uniform bound for all � 2 U .Let P� be the corresponding phase diagram, i.e. the decomposition of U into manifoldswith con�gurations of minimum energy. The statement of the following theorem is thatthe collection P = fM(Q)gQ�D of manifolds where the con�gurations of Q yield purephases of the full model is also a regular phase diagram and di�ers only slightly from P�.To measure the distance of two manifoldsM andM0, we introduce the Hausdor� distancedistH(M;M0) = max( sup�2M dist(�;M0); sup�2M0 dist(�;M)):Theorem 3.7. Low temperature phase diagram.H = T + V , T 2 Q. Under the Assumptions 1{5 there exist "0 > 0 and �0 = �0(�)such that if kTk+Pr�1i=1 k @@�iTk 6 "0 and � > �0, there exists a collection of manifoldsP� = fM�(Q)gQ�D such that(a) The collection P� determines a regular phase diagram;(b) If � 2M�(Q), the corresponding pure state h�id� exists for every d 2 Q and satis�esthe properties b), c), d) and e), from Theorem 3.6;(c) The Hausdor� distance distH between the manifolds of P� and their correspondentin P� is bounded,distH(M�(Q);M�(Q)) 6 O( e�� + kTk+ r�1Xi=1
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);for all Q � D.The proofs of these theorems are given in Chapter 8.
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CHAPTER 4Applications to Hubbard modelsAs illustrations we consider two systems, with fermions and bosons respectively. The�rst one is a modi�ed Hubbard model in which the hopping of the particles depends ontheir spin | this modi�cation being introduced for mathematical rather than physicalreasons. The second one is the Bose-Hubbard model, which described hopping bosons ona lattice, with on-site and/or longer-range interactions.1. The asymmetric Hubbard modelThe physical system consists of quantum particles with spin on a lattice � � Z�(� > 2). The phase space could be constructed as the Fock space for fermions in �;however, it is simpler to proceed as in Chapter 2, i.e. to choose a single site phase spaceand to construct the Hilbert space spanned by the classical con�gurations. Hence we take
 = f0; "; #; 2g; a basis of H� is f jn�i : n� 2 
�g. The Hamiltonian has kinetic andpotential parts; the potential part depends on a chemical potential � and an externalmagnetic �eld h: H�;h = T + V �;h: (4.1)T = (TA), A = (< x; y >; �), where < x; y > is an ordered pair of nearest neighbours(kx� yk1 = 1) and � 2 f"; #g is the spin; in this caseTA = t�cyx�cy� ; (4.2)with t� 2 R being the hopping coe�cient, that depends on �. In other words [see (2.17)],TA = (t"(cyx"cy" + cyy"cx") + t#(cyx#cy# + cyy#cx#) if A = fx; yg with kx� yk1 = 10 otherwise.If t" = t# we have the usual Hubbard model. However in the sequel we shall restrictour attention to the range of parametersU � jt"j � jt#j;when discussing the antiferromagnetic phase. Hopping coe�cients are related to the massof particles, and there is no physical justi�cation why the mass of spin up particles shouldbe much smaller than the one for spin down electrons. However, this model can havedi�erent meaning, e.g. describing electrons interacting with ions; the latter are heavierand thus their hopping constant is smaller. This model is a generalization of the Falicov-Kimball one. One has to remark that the physics of the model is signi�cantly modi�edby setting t" 6= t#; this arti�cially breaks a continuous symmetry of the Hubbard model,namely the rotation invariance of the magnetization.The potential V �;h is the quantum equivalent of a classical on-site interaction ��;h,��;hx (nx) = Unx"nx# � �(nx" + nx#)� h(nx" � nx#): (4.3)35



36 4. APPLICATIONS TO HUBBARD MODELSWe can solve this model exactly, at least in the \atomic limit" t"; t# ! 0. The freeenergy per site isf(�; �; h) = U2 � �� 1� logh2 cosh��U2 � ���+ 2 e�U=2 cosh(�h)i (4.4)(it does not depend on the dimension). f(�; �; h) is analytic in �; �; h and therefore nophase transition may occur. The magnetization is�@f@h (�; �; h) = sinh(�h)e��U=2 cosh�� U2 � ���+ cosh(�h) : (4.5)It is an increasing function of h, which is zero at h = 0; this describes a paramagneticphase.Since the potential is only on-site, there is a domain of thermodynamic parameterswith analyticity of the free energy, extending to low temperatures:Theorem 4.1. Paramagnetic phase.There exists c1; c2 > 0 such that the free energy is analytic in the union of the twodomains �(jt"j+ jt#j) < c1�(t2" + t2#)min(�;U � �)� jhj < c2 (provided min(�;U � �)� jhj > 0)and the corresponding Gibbs state exists in the thermodynamic limit, is thermodynamicallystable and exponentially clustering.Analyticity in the �rst domain results from Theorem 3.2; the second domain is provedin [Uel 1998] (and in the case t# = 0, i.e. for the Falicov-Kimball model, this was done in[KL 1986]).To study the e�ects of quantum 
uctuations, let us rewrite the potential as��;hx (nx) = U2 �nx" + nx# � �U � 12�2 � h(nx" � nx#)� C (4.6)with C = �22U + �2 + U8 . We take for G the set of all con�gurations with exactly one particleper site. G is an in�nite set (for all �nite �, we have jG�j = 2j�j). Constants �0 and �0of Assumption 1 (page 27) can be chosen as�0 = 12� �min(�;U � �)� jhj��0 = 2jhj:Actually, (3.2) holds with the lower bound min(�;U � �) � jhj; but �0 also appears inAssumption 2, and it will turn out that the factor 1=2� is necessary). The list S oftransitions that we consider for the e�ective potential isS = f(A;A0) : A = (<x; y>; ") and A0 = (<y; x>; ") for some x; y 2 Z�; kx � yk2 = 1g:The e�ective potential is given by (3.9). We have �fx;yg(nfx;yg; gfx;yg) = U if nfx;yg 2f(0; 2); (2; 0)g and gfx;yg 2 Gfx;yg; furthermorehgfx;ygj cyx"cy"cyy"cx" jgfx;ygi+ hgfx;ygj cyy"cx"cyx"cy" jgfx;ygi = (1 if gfx;yg 2 f("; #); (#; ")g0 otherwise. (4.7)



1. THE ASYMMETRIC HUBBARD MODEL 37The e�ective potential is then	fx;yg(gfx;yg) = (�t2"=U if gfx;yg 2 f("; #); (#; ")g0 otherwise. (4.8)This interaction is nearest-neighbour and can be inscribed in blocks 2� � � � � 2. We takeR = 12 and choose for the physically equivalent interaction ��x(nU 0(x)) = 12� Xy2U 0(x)��;hy (ny) + 12��1 Xfy;zg�U 0(x)ky�xk2=1 	fx;yg(nfx;yg): (4.9)The set D of dominant states has two elements, namely the two chessboard con�gu-rations d(1) and d(2); if (�1)x + Q�i=1(�1)xi ,d(1)x = (" if (�1)x = 1# if (�1)x = �1 d(2)x = (" if (�1)x = �1# if (�1)x = 1:To �nd the Peierls constant � of Assumption 2, page 30, let us make the followingobservation. Consider a cube 2� � � � � 2 in Z�, that we denote C, and a con�guration nCon it. First, only con�gurations with one particle per site need to be taken into account,the others having an increase of energy of the order U . If nC 2 GC , then all edges of thecubes are either ferromagnetic, or antiferromagnetic. If a spin at a site is 
ipped, thenexactly � edges are changing of state. Since any con�guration can be created by startingfrom the chessboard one, and 
ipping the spins at some sites, we see that the minimumnumber of ferromagnetic edges, for con�gurations that are not chessboard, is �. This leadsto � = �2��1 t2"U � jhj. Let us introduce � = 1� 2��1� Ut2" jhj, so that � = �2��1 t2"U �.The maximum of the expression in Assumption 3 is equal to max(t2#; t4"). If thereexists " > 0 such that jt#j 6 jt"j1+", the bound of Assumption 3 can be chosen to beb1 = 2��1U�� jt"j2". For Assumption 4 the expression has maximum equals to jt#t"j and wecan take b2 = 2��1U�� jt"j" (this Assumption is not true in the symmetric Hubbard model;the e�ective potential is not strong enough in order to forbid the model to jump from oneg to another g0).As a consequence of Theorem 3.6, the chessboard states are stable at low temperatures.Theorem 4.2. Chessboard phases in asymmetric Hubbard model.We assume � > 2, 0 < � < U , h < 2��1� t2"U , and jt#j 6 jt"j1+" with " > 0. Thenfor any � > 0, there exist t0 > 0 and �0(t"; h) < 1 (limt"!0 �0(t"; 0) = 1) such that ifjt"j 6 t0 and � > �0,� The free energy exists in the thermodynamic limit, as well as expectation values ofobservables.� There are two pure periodic phases, h�i(1) and h�i(2), with exponential decay of cor-relations.� h�i(1) represents a pure phase that is a small deformation of the �rst chessboardcon�guration:hnx"i(1)( > 1� � if (�1)x = 16 � if (�1)x = �1 hnx#i(1)( 6 � if (�1)x = 1> 1� � if (�1)x = �1;



38 4. APPLICATIONS TO HUBBARD MODELSand h�i(2) represents a pure phase that is a small deformation of the second chess-board.To construct the two pure phases, one way is to add to the Hamiltonian a staggeredmagnetic �eld ~h ~Vx + �(�1)x~h(nx" � nx#):Then h�i(1) = lim~h!0+h�i per(~h)and h�i(2) = lim~h!0�h�i per(~h);where h�i per(~h) is the thermodynamic limit of the state with periodic boundary conditions,and Hamiltonian H�;h;~h = V �;h + T + ~h ~V . ~V is no physical object. However, the notionof thermodynamic stability is physical, and any possible instability has to be considered,including staggered magnetization.temperature
t"

paramagnetic
antiferromagneticFigure 4.1. Phase diagram of the asymmetric Hubbard model.Notice that the Hamiltonian conserves the number of particles, and the magnetizationin both directions. Following [BKU 1997], one expects to have bounds on compressibilitycoe�cient and on susceptibility; namely, if t" 6= 0,��� @@�h(nx" + nx#)i�;h;���� 6 C e�c� (4.10)��� @@h h(nx" � nx#)i�;h;���� 6 C 0 e�c0� : (4.11)In particular, these quantities vanish in the ground state (see the concluding remarks,Chapter 9, for additional discussion).Hubbard model with longer-range hopping. A natural question is whether theapproximation of considering hopping only betweeen nearest-neighbours is correct. Inother words, what happens if the particles have the posibility to hop onto next-nearest-neighbours? The answer depends on the value of the longer-range hoppings; if they arestrong enough, other phases occur, namely planar and lamellar ones [GKU 1998].We consider the case of dimension � = 3; the hopping matrix is T = (TA), whereTA = (t(j)� cyx�cy� if A = ((x; y); �) with kx� yk2 = pj, j = 1; 2; 30 otherwise. (4.12)



2. THE BOSE-HUBBARD MODEL 39Actually, the quantum matrix is not a quantum interaction with connected supports, andso does not ful�ll our assumptions. This could be corrected by de�ning a new equivalentinteraction with connected supports. For simplicity, we only refer to [GKU 1998] wherethe e�ective interaction is explicitely written in the case of lattice systems of hoppingparticles.The potential is as before given by an on-site Coulomb repulsion; to simplify, we setU = 1.The list of transitions leading to the e�ective potential isS = f(A;A0) : A = (<x; y>; ") and A0 = (<y; x>; "); x; y 2 Z� with kx�yk2 = 1;p2;p3g:From (3.9) we obtain	fx;yg(gfx;yg) = (�(t(j)" )2 if gfx;yg 2 f("; #); (#; ")g0 otherwise. (4.13)The physically equivalent potential � may be chosen as to act on cubes of size 1 (i.e. with8 sites). Candidates for minimizing � are
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+chessboard planar lamellar enigmatic(here \+" stands for \"" and \�" stands for \#"). The corresponding energies are�x(ncbC ) = �3(t(1)" )2 � 4(t(3)" )2�x(nplC ) = �(t(1)" )2 � 4(t(2)" )2 � 4(t(3)" )2�x(nlamC ) = �2(t(1)" )2 � 4(t(3)" )2�x(nenC ) = �32(t(1)" )2 � 3(t(2)" )2 � 4(t(3)" )2:It is not hard to check that for any t(1)" , t(2)" , t(3)" , the ground con�gurations are amongthese four (and all obtained by rotations and re
ections). Domains where they are groundstates are shown in Fig. 4.2; enigmatic con�guration is present on the coexistence linebetween chessboard and planar.The zero-temperature phase diagram of the e�ective potential is not regular. How-ever, it is possible to prove stability of chessboard, planar and lamellar phases, but thetransitions from one phase to another are not understood. Between the chessboard andthe planar phases, either there is �rst-order phase transitions, or there are two transitions,one from chessboard to enigmatic, and one from enigmatic to planar. Transitions fromchessboard to lamellar, or planar to lamellar, are a mystery; it is even not clear if thereare phase transitions. An open question is whether enigmatic phase is present?2. The Bose-Hubbard model2.1. Introduction. Lattice models of interacting bosons have been considered fordi�erent reasons. On the one hand they were used as models capturing important featuresof such systems as, for instance, 4He absorbed in porous media, or superconductors whereCooper pairs are approximately bosonic quasiparticles. But more importantly, it was



40 4. APPLICATIONS TO HUBBARD MODELS(t(3)" =t(1)" )2
(t(2)" =t(1)" )212 1 321412

34 planarchessboard
lamellarFigure 4.2. Zero-temperature \phase diagram" of the asymmetric Hubbard model withextended hopping. Enigmatic con�guration appears in-between chessboard and planarones.suggested that these systems could play an important role in the study of Bose-Einsteincondensation1 and super
uidity in interacting systems.Widely used is the Bose-Hubbard model [FWGF 1989] which describes bosonic particleshopping on a lattice. The basic ingredients are a hopping term for the kinetic energy ofthe bosons, and an on-site interaction proportional to the number of pairs of bosons atthe same site, H� = �t X<x;y>��(cyxcy + cyycx) + U0Xx2��n2x � nx�� �Xx2�nx: (4.14)Here the sum of hopping terms runs over nearest neighbours, and the on-site repulsivepotential per pair is 2U0; � is the chemical potential.The zero temperature phase diagram was studied by Fisher et al. [FWGF 1989] (withand without an additional random potential); their discussion suggested the phase diagramaccording to Fig. 4.3. It consists of domains of incompressible phases with integer densitiesnear the t = 0 axis, and a domain of the super
uid phase. The nature of the transitionbetween incompressible and super
uid phases is still not understood.A natural way to extend the Bose-Hubbard model is to introduce longer-range interac-tions between bosons. Let us consider the Hamiltonian de�ned on a d-dimensional lattice� � Z� (� > 2) byH� = �t X<x;y>��(cyxcy + cyycx) + U0Xx2��n2x � nx�+ �Xk=1Uk Xkx�yk2=pkjx�yj 6 1 nxny � �Xx2�nx:(4.15)The ground states are not di�cult to �nd in two extremal cases, t = 0 and t = 1 (i.e.setting all the couplings Uk to 0). The �rst case reduces to a problem of �nding the groundstates of a classical system. In the latter case, the bosons are independent and a Fouriertransform diagonalizes the one-body Hamiltonian associated with the kinetic part; at zerotemperature the particles exhibit a Bose-Einstein condensation.In the case of large enough U0 and U1 > 2U2 > 0, the zero-temperature phase diagramof the two-dimensional version of (4.15) is depicted in Fig. 4.4. The translation invariant1The Indian name \Bose" has to be pronounced \Bosh"; we thank Nilanjana Datta for this crucialinformation. Please pay attention in the sequel to boshons and boshonic systems.



2. THE BOSE-HUBBARD MODEL 41phases � = n were also present for the on-site Bose-Hubbard model. Nearest neighbourinteractions are responsible for the occurrence of chessboard phases (with � = n + 12 ).These phases are not translation invariant | the system exhibits symmetry breaking.Finally, phases with quarter integer densities with alternating rows of density n and n+ 12are present because of next nearest neighbour interactions.It is interesting to discuss the degeneracy of the classical (t = 0) ground states of(4.15). While the integer and half integer phases have �nite degeneracies, the quarterinteger phases do not. Taking, e.g., the phase � = 1=4, there is alternatively an empty rowwithout any boson and a row of staggered (antiferromagnetic) occupation pattern with 0or 1 boson at each site. The degeneracy is roughly proportional to the exponential of j�j 12 .Theorem 3.3 applies in the darker domains, where the number of classical ground statesis �nite. For quarter-integer densities, we can use Theorem 3.6, provided some hard-coreis added to the model, in such a way to have �nite single site phase space.In three dimensions the model exhibits even more interesting degenerated phases. Withwell chosen parameters, the classical part of (4.15) has in�nitely many ground states suchthat their restriction to any cube is a con�guration of the following form (up to rotationsand re
ections)Here all ground con�gurations have density 1/8. To evaluate their number, we can look atall the possibilities of putting blocks 3� 3� 3 with one particle at the middle, in a givenvolume. There must be no intersection, and no empty space between the blocks. It isnot clear how much possibilities there are; however, we can observe that given boundaryconditions (i.e. with �xed boundaries of the volume), there is at most one way to make acovering without intersection nor empty space. This means that their total number doesnot grow faster than the exponential of the boundary of the volume. In other words, thereis no residual entropy in this system.For a di�erent choice of parameters, the base cube is as follows,The density is locked to 1/4 and the degeneracy is roughly proportional to the exponentialof j�j 13 .At non-zero temperature we expect the degeneracy to be removed since a �nite numberof particular con�gurations of alternated staggered rows have lower excitation energy; this
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Figure 4.3. Zero temperature phase diagram for the Bose-Hubbard model in two di-mensions. Lobes are incompressible phases with integer densities. Our results hold indarker regions near the t = 0 axis (and also for low temperatures).
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Figure 4.4. Zero temperature phase diagram for the Bose-Hubbard model in two dimen-sions with nearest and next nearest neighbour interactions. Incompressible (insulating)phases of given density are expected to exist in grey regions. In the darker regions theexistence of such phases can be rigorously established.
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theory of \dominating ground states" preferred by low energy 
uctuations was presentedin [BS 1989]. It seems here that selected phases have alternating empty planes, andchessboard of a given type. One should expect that they are stable against perturbationswith a small hopping term. On the other hand, the e�ective potential from quantum
uctuations selects phases with alternating empty planes, and chessboard of alternatingtypes.If a coexistence surface separates the domain in the t; � plane where thermal 
uctua-tions dominate from that where quantum 
uctuations dominate, an interesting transitionoccurs, driven by the competition between two di�erent kinds of 
uctuations. Anotherpossibility is that the transition goes through many other phases, maybe with a devil'sstaircase structure.2.2. Results. We consider the two-dimensional case and make the following assump-tions on the coupling constants.U0 > 4U1 + 4U2; U1 > 2U2 > 0 (4.16)



2. THE BOSE-HUBBARD MODEL 43For each k 2 N consider the disjoint intervalsIk = f� : (2U0 + 8U1 + 8U2)k � 2U0 < � < (2U0 + 8U1 + 8U2)kg;Hk = f� : (2U0 + 8U1 + 8U2)k + 8U2 < � < (2U0 + 8U1 + 8U2)k + 8U1g;Q(1)k = f� : (2U0 + 8U1 + 8U2)k < � < (2U0 + 8U1 + 8U2)k + 8U2g;Q(2)k = f� : (2U0 + 8U1 + 8U2)k + 8U1 < � < (2U0 + 8U1 + 8U2)k + 8U1 + 8U2g:The relevance of this decomposition is clear when comparing with the vertical axis ofFig. 4.4.Hereafter we give two theorems. The �rst one for the existence of phases in thethermodynamic limit; we shall prove it in the sequel, using Theorem 3.4. The secondtheorem is about the incompressibility of the quantum ground states; it was proved in[BKU 1997]. These results do not cover the case of quarter densities, because of thedegeneracies of the classical ground states; we shall study this situation in the next section.At high temperatures there is a unique translation invariant phase; the proof of thisstatement is in [PY 1995].Theorem 4.3. Two-dimensional Bose-Hubbard model.Assume that the coupling constant satisfy the conditions (4.16). Then for each � 2 Ik,or � 2 Hk, there exists t0(�) and �0(�) such that for � > �0(�), t 6 t0(�),� if � 2 Ik, there is a unique state that is close to the classical ground state jni(k),with n(k)x = k for all x 2 Z�,� if � 2 Hk, there are two states, each one being close to a chessboard con�gurationwith k particles on each site of one sublattice, and k + 1 particles on each site ofthe other sublattice.Theorem 4.4. Incompressibility of ground state.Assume that the coupling constant satisfy the conditions (4.16). Then for each � 2 Ik,or � 2 Hk, there exists t0(�) and �0(�) such that for � > �0(�), t 6 t0(�),� if � 2 Ik, then ��hnxi�;� � k�� 6 C e�c� ;and �� @@�hnxi�;��� 6 C 0 e�c0� :� if � 2 Hk, then for nearest neighbours x, y,��h12(nx + ny)i�;� � (k + 12)�� 6 C e�c� ;and �� @@�h12 (nx + ny)i�;��� 6 C 0 e�c0� :The physical signi�cance of the theorem may be more clear when considering therelation between density and pressure. Recall that @�@� = �@�@p (�xed variables are thetemperature and the volume). Then we can derive the existence of plateaux in the graphof Fig. 4.5.This incompressibility theorem should not be mixed up with the uniform density the-orem of [LLM 1993], although there is some overlap. The latter uses special symmetriesof the system and shows uniformity of the density with respect to coupling constant andtemperature, for a class of models of the Hubbard type (the \classical ground states" may
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�
strong interactionsweak interactionsFigure 4.5. Graph of the density as a function of the pressure, at zero temperature(and in the case of the Bose-Hubbard model with only on-site interactions).be in�nitely degenerate). However, it is not uniform with respect to the chemical poten-tial, because only for special values of the latter the system has the necessary symmetries;the compressibility coe�cient does not vanish in general.In the case of small hopping, there is one (or two) pure state with exponential de-cay of correlations. These states are thermodynamically stable against an external �eldPx2�(cyx+cx), and therefore these phases are not super
uid. On the contrary, a system offree bosons without interactions features Bose-Einstein condensation. The situation hereis analogous to Mott insulator transition in fermionic systems, where an insulating phasemay appear because of the interactions between fermions | in contrast to the situation inband theory, where the insulating phase is due to an external periodic potential. So it isgenerally said that the Bose-Hubbard system forms a Mott insulator in the incompressiblephase.2Proof of Theorem 4.3. Let us �rst establish the Peierls condition (2.12). Theclassical part of the (two-dimensional) Bose-Hubbard Hamiltonian (4.15) | with chemicalpotential | may be written as a block interaction over plaquettes of 4 sites,�P (nP ) = Xx2P 14(U0n2x � U0nx � �nx) + 12U1 Xx;y2Pjx�yj=1nxny + U2 Xx;y2Pjx�yj=p2nxny: (4.17)With k an integer we introduce new variables, nx = k + mx, and with �P (k;mP ) =�P (nP ), a straightforward calculation leads to�P (k;mP ) = Ck +Xx2P 14(U0m2x � U0mx � �kmx) + 12U1 Xx;y2Pjx�yj=1mxmy + U2 Xx;y2Pjx�yj=p2mxmy;(4.18)where we de�ned Ck = 14U0(k2 � k)� 14�k + 4k2(U1 + U2), and�k = �� (2U0 + 8U1 + 8U2)k: (4.19)In the following, we show that, for a given k,a) if �k 2 [�2U0; 0], mP = � 0 00 0 � minimizes �P (k;mP ),b) if �k 2 [0; 8U2], mP = � 1 00 0 � (and the three obtained by rotation) minimizes�P (k;mP ),2We intentionally avoid the term \Mott insulating phase" because stricto sensu it is not a phase: thefact that a system can be considered to have Mott insulator behaviour depends actually on the chosenmicroscopic description.



2. THE BOSE-HUBBARD MODEL 45c) if �k 2 [8U2; 8U1], mP = � 1 00 1 � (and the other obtained by rotation) minimizes�P (k;mP ),d) if �k 2 [8U1; 8U1+8U2], mP = � 1 11 0 � (and the three obtained by rotation) minimizes�P (k;mP ).Clearly, from this and (4.19) we obtain the classical ground states for all � > 0 [andin the case � < 0, we see immediately in (4.17) that nx = 0, for any x, minimizes �P (kP )].For the point a), let us introduce a such that �k = �2U0(a + 12); it is easy to checkthat�P (k;mP ) = C 0k + (14U0 � U1 � U2)Xx2P(mx + a)2+ 14U1 Xx;y2Pjx�yj=1(mx +my + a)2 + 12U2 Xx;y2Pjx�yj=p2(mx +my + a)2; (4.20)and this is minimum for mx = 0, for any x 2 P , when a 2 [�12 ; 12 ], i.e. �k 2 [�2U0; 0].Moreover, we obtain a Peierls condition if �k 6= �2U0; 0.Point c) is similar; we de�ne a such that 14�k = U1 + U2 � 2a(U1 � U2); in this case�P (k;mP ) = C 00k + (14U0 � U1 + U2)Xx2P(mx � 12)2+ (14U1 � 12U2) Xx;y2Pjx�yj=1(mx +my � 1 + a)2 + U2�Xx2P mx � 2 + a�2: (4.21)� 1 00 1 � is ground state when a 2 [�12 ; 12 ], i.e. �k 2 [8U2; 8U1] (recall that U1 > 2U2). ThePeierls condition is also straightforward.Finally, we show that � 1 00 0 � is ground state for �k 2 [0; 8U2] and ��1 00 0 � for �k 2[�2U0�8U2;�2U0]. With " = +1 in the �rst case and " = �1 in the second case, we have�P (k;mP ) = C"k + (14U0 � U1 + U2)Xx2P(mx � 12")2+ (14U1 � 12U2) Xx;y2Pjx�yj=1(mx +my � 12")2 + U2�Xx2P mx � "+ a�2 (4.22)where a = 12 � �k=8U2 in the �rst case, and a = �12 � (�k + 2U0)=8U2 in the second case;the condition a 2 [�12 ; 12 ] yields the intervals for �k.Theorem 4.3 is then a consequence of Theorem 3.4.2.3. Quarter integer densities and e�ective potential. We need a �nite singlesite phase space when studying the quantum 
uctuations. This is the reason why wechoose U0 ! 1 in (4.15). This amounts to consider a new model with 
 = f0; 1g andwith an interaction on plaquettes�P (nP ) = 12U1 Xx;y2Pkx�yk2=1nxny + U2 Xx;y2Pkx�yk2=p2nxny � 14�Xx2P nx; (4.23)



46 4. APPLICATIONS TO HUBBARD MODELSand �A = 0 if A is not a plaquette. When 0 < � < 8U2, we have from (4.22) that �P (nP )is minimum if nP = � 1 00 0 �, or any con�guration obtained from � 1 00 0 � by rotation. Hencewe de�neG = nn 2 f0; 1gZ2 : nP 2 �� 1 00 0 �; � 0 10 0 �; � 0 00 1 �; � 0 01 0 �	 for any plaquette Po(G is here the set of ground states of the interaction �). Since �P (nP ) � �P (gP ) >14 min(�; 8U2��), for any nP =2 GP , gP 2 GP , Assumption 1 holds with �0 = 136 min(�; 8U2��) and �0 = 0 (the factor 136 , rather than 14 , has been chosen in view of Assumption 2, seebelow).We take as sequence of transitions for the smallest quantum 
uctuationsS = f(A;A0) : A =<x; y> and A0 =<y; x> for some x; y 2 Z2; kx� yk2 = 1g:The e�ective potential follows from (3.9). Let Pxy = [P\fx;yg6=?P and more generally wedenote by P any 3� 4 or 4� 3 rectangle. Up to rotations and re
ections, we have to takeinto account �ve con�gurations, namely0 1 00 0 00 1 00 0 0g(A)P 0 1 00 0 01 0 10 0 0g(B)P 1 0 10 0 00 1 00 0 0g(C)P 1 0 10 0 01 0 10 0 0g(D)P 1 0 00 0 11 0 00 0 1g(E)PWe �nd 	P(g(A)P ) = �t2=2U1, 	P(g(C)P ) = �t2=4U2, and 	P(g(B)P ) = 	P(g(D)P ) = 	P(g(E)P ) =0. We can choose R = 32 ; U 0(x) is a block 4 � 4 centered on (x1 + 12 ; x2 + 12). Thecon�guration gU 0(x) 2 GU 0(x) are (up to rotations and re
ections)1 0 1 00 0 0 01 0 1 00 0 0 0g(a)U0(x) 1 0 1 00 0 0 00 1 0 10 0 0 0g(b)U0(x)We choose for ��x(nU 0(x)) = 19 XP�U 0(x) ~�P (nP ) + 12 XP�U 0(x)	P(nP); (4.24)with ~�P (nP ) = �P (nP ) �ming2G�P (gP ). Which con�gurations, among the ones gener-ated by g(a) and the ones generated by g(b), allows for more quantum 
uctuations? Thee�ective potential yields �x(g(a)U 0(x)) = � t22U1�x(g(b)U 0(x)) = � t24U1 � t28U2 :We see that the set of dominant states D is formed by all the con�gurations generated byg(b) (jDj = 8). Heuristically, there is more freedom for the bosons to move in g(b), sincethey can go to a nearest-neighbour site and feel a small repulsion of strength U2; as forbosons of the con�guration g(a), any nearest-neighbour move brings them at distance 1 ofanother boson, and they feel a bigger repulsion U1.As a result we can choose � = t2( 18U2 � 14U1 ) in Assumption 2. The maximum of theexpression in Assumption 3 is b1 = t2( 18U2 � 14U1 )�1. In Assumption 4 b2 = 0, becauseg 6= g0 means that g and g0 must di�er on a whole row, and the matrix element is zero forany �nite m.



2. THE BOSE-HUBBARD MODEL 47These eight dominant states bring eight pure periodic phases, h�i(1); : : : ; h�i(8); eachone can be constructed by adding a suitable �eld in the Hamiltonian (e.g. the projectoronto the dominant state).Theorem 4.5. Hard-core Bose-Hubbard model.Consider the hard-core Bose-Hubbard model on the lattice Z2, and suppose U1 > 2U2and 0 < � < 8U2. There exist t0 > 0 and �0(t) < 1 (limt!0 �0(t) = 1) such that ift 6 t0 and � > �0,� the free energy exists in the thermodynamic limit with periodic boundary conditions,as well as expectation values of observables,� there are 8 pure periodic phases with exponential decay of correlations.Each of these eight phases is a perturbation of a dominant state d, and the expectationvalue of any operator is close to its value in the state d, see Theorem 3.6 for more precisestatement.
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CHAPTER 5Cluster expansionsCluster expansions (or swarm expansions1) appeared in Statistical Physics in the 30's(see Chapter 3 of [P� 1991] and references therein) | we met the works of Mayer andcollaborators in the prolog. Its use in classical lattice systems began with the study ofpolymer models [Kunz 1971]. A proof of the convergence of the cluster expansion wasgiven by Gruber and Kunz [GK 1971]. We present two approaches. The �rst one isinspired by Koteck�y and Preiss [KP 1986]; a nice feature consists in its independence withrespect to detailed properties of the bees. The proof of Proposition 5.1 that we give hereis due to Dobrushin [Dob 1994]. The second approach follows P�ster [P� 1991], himselffollowing Brydges' lectures [Bry 1986]. It allows for a continuous set of bees.The bees sting, but also produce honey; similarly the swarm expansion is ratherpainful, but brings very nice results in Statistical Physics. We shall see later in thischapter that in all reasonable lattice models, a unique thermodynamic phase exists athigh temperature.2 All the perturbative approach to the theory of �rst order phase tran-sitions (the Pirogov-Sinai theory) is actually based on cluster expansions | even thoughwe shall see in Chapter 6 that it is certainly more than just an application.1. The hive or the abstract polymer modelLet B be the hive, i.e. the set of bees, that we suppose to be �nite. A re
exive andsymmetric relation � is given on B ; we say that b; b0 2 B are incompatible if b�b0, otherwisethey are compatible. A set of bees B � B is called admissible if its elements are mutuallycompatible. The partition function of a hive B isZ(B ) = XB�BB admissibleYb2Bw(b) (5.1)where w : B ! C is called the weight of the bee b. If B = ?, we set Z(?) = 1.Let C = (b1; : : : ; bn), bj 2 B , and consider the graph G(C) with n vertices and with anedge between di�erent vertices i and j whenever bi�bj. C is a swarm, or a cluster, if G(C)is connected. Then if the weights w(b) are small enough, we have the following expansion.1The name \swarm expansion" is the English translation of \d�eveloppement en essaims", the Frenchexpression for \cluster expansion". Hence bees and hives. As for Dobrushin, he chose to expand animalsand herds of animals, and he obtained gangs of animals [Dob 1994].2Typical results of cluster expansions are the analyticity of free energies; but they also �nd a use inprobability theory, to prove e.g. central limit theorems. Assumptions can be weakened in this situation[FFG 1998]. 49



50 5. CLUSTER EXPANSIONSProposition 5.1. Swarm expansion.Let w0; v : B ! R+ two positive functions on bees, with w0(b) > 0 for all b 2 B , andassume the following inequality:1� w0(b) expn Xb02Bb0�b;b0 6=bw0(b0)v(b0)o > e�w0(b)v(b) (5.2)for any b 2 B ; then if jw(b)j 6 w0(b) for all b 2 B , we havelogZ(B ) = XC=(b1;:::;bn); bj2B �T(C); (5.3)and �T(C) satis�es the boundj�T(C)j 6 nXj=1w0(bj)v(bj) nYj=1 jw(bj)jw0(bj) : (5.4)Before proving Proposition 5.1, we establish a useful lemma.3Lemma 5.2.If the inequality (5.2) is valid, then���log Z(B )Z(B 0) ��� 6 Xb2BnB 0 w0(b)v(b) (5.5)for any �nite B ; B 0 with B 0 � B .Proof. By induction on the number of elements in B . The lemma clearly holds ifB = ? or if B 0 = B . Otherwise there exists at least one bee b0 2 B n B 0 .���log Z(B )Z(B 0 ) ��� = ���log Z(B )Z(B n fb0g) Z(B n fb0g)Z(B 0) ��� 6 ���log Z(B )Z(B n fb0g) ���+ ���log Z(B n fb0g)Z(B 0) ���:(5.6)From the induction assumption,���log Z(B n fb0g)Z(B 0) ��� 6 Xb2BnB 0b6=b0 w0(b)v(b); (5.7)the lemma is proved if we can show that���log Z(B )Z(B n fb0g) ��� 6 w0(b0)v(b0): (5.8)From the de�nition (5.1) of the partition function, we haveZ(B ) = Z(B n fb0g) + w(b0)Z(B 0) (5.9)with B 0 � B n fb0g the set of all bees compatible with b0. Therefore���log Z(B )Z(B n fb0g) ��� = ���log�1 + w(b0) Z(B 0)Z(B n fb0g)����: (5.10)3The lemma is slightly stronger than the one of [Dob 1994] and is needed so in the proof of Proposition5.1. This was pointed out by Koteck�y.



1. THE HIVE OR THE ABSTRACT POLYMER MODEL 51The induction assumption implies���w(b0) Z(B 0 )Z(B n fb0g) ��� 6 w0(b0) expn Xb2Bb�b0;b6=b0 w0(b)v(b)o < 1 (5.11)[the last term is strictly smaller than 1 because of (5.2)]. For any z; z0 2 C , jzj 6 jz0j < 1,it is not hard to check that (for the �rst inequality, simply expand the logarithm withTaylor series) ��log(1 + z)�� 6 � log(1� jzj) 6 � log(1� jz0j):As a consequence���log Z(B )Z(B n fb0g) ��� 6 � log�1� w0(b0) expnXb�b0 w0(b)v(b)o� (5.12)and the RHS is smaller than w0(b0)v(b0) because of (5.2).Proof of Proposition 5.1. logZ(B ) may be viewed as a function of the numbersw(b), b 2 B . More precisely, let w = (w(b))b2B , andFB (w) : U = �w(b) 2 C : jw(b)j 6 w0(b)	! Cw 7! FB (w) = log XB�BB admissibleYb2Bw(b): (5.13)FB is the logarithm of a polynomial in fw(b); b 2 Bg which has no zero in U because ofLemma 5.2. Therefore FB is holomorphic and we can write its Taylor serie:FB (w) = Xn > 1 Xb1;:::;bn2B 1n!'T(b1; : : : ; bn) nYj=1w(bj) (5.14)with 'T(b1; : : : ; bn) = n nYj=1 @@w(bj)oFB (w)����w=0: (5.15)Let us see that 'T(b1; : : : ; bn) is zero if (b1; : : : ; bn) is not a cluster. Let B = fb1; : : : ; bng(jBj < n if (b1; : : : ; bn) contains many times a same bee) and decompose B = B1 [ B2,B1; B2 6= ?, in such a way that any element of B1 is compatible with any element of B2.Observe that we can substitute FB (w) by FB(w) in (5.15), and that from (5.13),FB(w) = FB1(w) + FB2(w):Since FB1(w) does not depend on fw(b) : b 2 B2g, its contribution vanishes in (5.15); thesame with FB2(w).Finally, the bound (5.4) can be obtained by the use of Cauchy formula. Let �b denotethe number of occurences of b in (b1; : : : ; bn); then'T(b1; : : : ; bn) = 1n!nYb2B �b!2�i Ijw(b)j=w0(b) dw(b)w(b)�b+1oFB(w): (5.16)Using Lemma 5.2, we get jFB(w)j 6 Xb2Bw0(b)v(b): (5.17)Taking the modulus in the integrals, we �nd the bound (5.4).



52 5. CLUSTER EXPANSIONS2. The polymer expansionThe previous approach is beautifully abstract and the proof is very elegant. It hashowever an important limitation: the set of bees must be �nite, while we shall face acontinuous one in Chapter 8. So we present an alternate theory of swarm expansion, thatwe refer to as the polymer expansion. It is mostly a simpli�cation of the Chapter 3 of[P� 1991]: we restrict to the case where the polymers interact only through a condition ofnon-intersection (hard-core). Let X the space of polymers. We note � 2 X a polymer, andsuppose that a measure has been de�ned on X; if f : X ! C is a measureable function,we write RXd�f(�) the integral of f with this measure. T � R� is a discrete or continuoussubset of R� , with a notion of connectedness; if A;B � T, we note A e B the property\A [B is connected".The polymers have a support Supp � � T and a length j�j > 0 (the bees had not), anda weight w : X ! C .As before, we write C = (�1; : : : ; �n), �j 2 X; SuppC = [�2C Supp � and jCj =P�2C j�j. G(C) is the graph with n vertices and with an edge between di�erent vertices iand j whenever Supp �i e Supp �j. C is a cluster whenever G(C) is connected. We de�nethe truncated function �T(C) by�T(C) = 1n!'T(G(C)) nYj=1w(�j) (5.18)with 'T(G(C)) = (1 if n = 1PGQe(i;j)2G�� I�Supp �i e Supp �j�� if n > 2; (5.19)where the sum is over all connected graphs G of n vertices. Notice that �T(C) = 0whenever C is not a cluster. It is natural to conjecture that 'T(G(C)) = 'T(�1; : : : ; �n)introduced in (5.15).We start with a proposition that gives the polymer expansion in the simple case wherethe polymers are connected subsets of Z�. Here T = Z�, Supp � = �, and j�j = jSupp �j.Proposition 5.3. Polymer expansion.Let � � Z�, j�j < 1, and X(�) = f� � � : � connectedg. A complex functionw : X(�) ! C is given, that satis�esjw(�)j 6 e�
j�j : (5.20)Then if 
 > 2� + log 2i, we havelog Xf�1;:::;�ng�j��;�i 6e�j nYj=1w(�j) = XC=(�1;:::;�n)�j�� �T(C) (5.21)with �T(C) the truncated function de�ned in (5.18).For any c <1 and � > 0 there exists 
0 <1 (depending on �, c and �) such that if
 > 
0, XC;SuppC3x j�T(C)j ecjCj 6 � (5.22)for any x 2 Z�.



2. THE POLYMER EXPANSION 53Suppose furthermore that w depends on a parameter � 2 U � Rp , w � w�, and thatwe have a bound on the derivatives��� @@�iw�(�)��� 6 e�(
�1)j�j ; 1 6 i 6 p: (5.23)Then for any c < 1 and � > 0 there exists 
0 < 1 (depending on �, c and �) such thatif 
 > 
0, XC;SuppC3x��� @@�i�T(C)��� ecjCj 6 � (5.24)for any x 2 Z�.When considering the exponential decay of correlation functions, and in many othersituations, one may have to estimate a sum over clusters with length bigger than a number`. From (5.22) we obtainXC;SuppC3x;jCj > ` j�T(C)j 6 e�c` XC;SuppC3x j�T(C)j ecjCj6 � e�c` ; (5.25)for any c <1 and � > 0, by choosing 
 large enough (depending on c and �, but not on`). Actually, the motivation to state Proposition 5.3, that is equivalent to Proposition5.1, is double. First because we shall use it when dealing with contour models, secondbecause its proof follows from the more abstract Proposition 5.4, that we can now betterunderstand.Proposition 5.4. Generalized polymer expansion.Let X be a measurable space of polymers, and w : X ! C the weight. Assume thatthe weight is measurable, as well as the indicator function I�Supp �i e Supp �j�. De�ne�T(C) by (5.18) and (5.19), and write R dC �Pn > 1 RXn d�1 : : : d�n. Then ifZ dCj�T(C)j <1; (5.26)we have the polymer expansion, that is,exp�Z dC�T(C)� = 1 + Xn > 1 1n! ZXn d�1 : : : d�nh nYj=1w(�j)iYi<j I�Supp �i 6eSupp �j�:(5.27)This proposition will be useful in Chapter 8, in a situation with more complicatedpolymers than just subsets of � � Z�.Proof. We start with the RHS of (5.27). SinceI�Supp �i 6eSupp �j� = 1� I�Supp �i e Supp �j�;we have Y1 6 i<j 6 n I�Supp �i 6eSupp �j� =XG Ye(i;j)2G�� I�Supp �i e Supp �j�� (5.28)



54 5. CLUSTER EXPANSIONSwhere the sum is over all graphs of n vertices, not necessarily connected. We can decomposeG into connected components, namely G = fG1; : : : ;Gkg; G`, 1 6 ` 6 k, is a connectedgraph with m` vertices, and m1 + :::+m` = n.The RHS of (5.27) can be rewritten::: = 1 + Xn > 1 1n! nXk=1 1k! X(G1;:::;Gk) kỲ=1 Z d�1̀ : : : d�m̀`hmỲj=1w(�j̀)i Ye(i;j)2G`�� I�Supp �i e Supp �j��: (5.29)The sum over seqences (G1; : : : ;Gk) can be done by �rst summing over m1, : : : , mk withm1+ :::+m` = n; next by partitionning f1; 2; : : : ; ng into k sets withm1, : : : , mk elements(there are n!m1!:::mk! di�erent partitions); then by summing over connected graphs in eachset. Therefore: : : = 1 + Xn > 1 1n! nXk=1 1k! Xm1;:::;mk > 1m1+:::+mk=n n!m1! : : : mk! kỲ=1Z d�1̀ : : : d�m̀`hmỲj=1w(�j̀)iXG` Ye(i;j)2G`�� I�Supp �i e Supp �j��= 1 + Xk > 1 1k!n Xm > 1 Z d�1 : : : d�m�T(�1; : : : ; �m)ok (5.30)where we have used the de�nitions (5.18) and (5.19). We get the LHS of (5.27).It s clear that all these expressions are convergent: condition (5.26) implies absoluteconvergence of the series in n of (5.30), and the same with (5.29) and (5.27).In view of the proof of Proposition 5.3, we need a lemma.Lemma 5.5.0 6 (�1)n�1'T(G(C)) 6 XT :tree of n vertices Ye(i;j)2T I�Supp �i e Supp �j�:As a consequence, j'T(G(C))j 6 nn�2, since nn�2 is the number of trees with n vertices.Proof. In this proof we consider only graphs with n vertices, and the notation G � G0means that the set of edges of G, is a subset of the set of edges of G0.The following property is true: to any tree T we can associate a graph G�(T ) suchthat� G�(T ) � T ;� the sets E(T ) = fG : T � G � G�(T )g constitute a partition of the set of allconnected graphs.This can be proven by de�ning a procedure that attributes a tree to each connected graph,by deleting some edges [Pen 1967, P� 1991].



2. THE POLYMER EXPANSION 55The sum over all connected graphs in (5.19) can be done by �rst summing over treesT , then summing over graphs in E(T ).'T(G(C)) =XT XG2E(T ) Ye(i;j)2G�� I�Supp �i e Supp �j��=XT Ye(i;j)2T �� I�Supp �i e Supp �j�� Ye(i;j)2G�(T )nT �1� I�Supp �i e Supp �j��:(5.31)The bound is clear, since the last product is smaller or equal to 1.Proof of Proposition 5.3. It is enough to prove the last two claims, since (5.21)follows from (5.22) with c = 0 and Proposition 5.4.We estimate (5.22) using the Lemma 5.5.XC;SuppC3x j�T(C)j ecjCj 6 Xn > 1 X�1;:::;�n�13x 1(n� 1)!� nYj=1 e�(
�c)j�j j �XT Ye(i;j)2T I��i e �j�:(5.32)Let i1, : : : , in the incidence numbers of a tree with n vertices. We �rst proceed with thesummation over polymers k 6= 1 for which ik = 1; in the tree T , k shares an edge with avertex m, and this means that �k e �m, so that we �nd a boundX�k:�ke�m e�(
�c)j�k j 6 2�j�mjX�k3x e�(
�c)j�k j : (5.33)ThenXC;SuppC3x j�T(C)j ecjCj 66 Xn > 1 1(n� 1)!XT �X�13x(2�j�1j)i1 e�(
�c)j�1j � nYj=2�X�j3x(2�j�j j)ij�1 e�(
�c)j�j j �: (5.34)The sum over trees T can be done by �rst choosing the incidence numbers, then summingover the trees. There are (n� 2)!(i1 � 1)! : : : (in � 1)! 6 (n� 1)!i1!(i2 � 1)! : : : (in � 1)!trees with incidence numbers i1, : : : in. Summing now over the incidence numbers, we getXC;SuppC3x j�T(C)j ecjCj 6 Xn > 1�X�3x e�(
�c�2�)j�j �n: (5.35)From (2.1), we have X�3x e�(
�c�2�)j�j 6 e�(
�c�2�) i1� e�(
�c�2�) i + ": (5.36)" can be put as small as necessary by taking 
 large enough; this proves the bound (5.22).To prove (5.21), we take c = 0 and " < 1; this brings the condition 
 > 2� + log 2i.



56 5. CLUSTER EXPANSIONSThe bound (5.24) may be proven in the same way; since@@�i�T(C) = 1n!'T(G(C)) nXj=1�Yk 6=jw(�k)� @@�iw(�j); (5.37)we have �� @@�i�T(C)�� 6 1(n� 1)! j'T(G(C))j nYj=1 e�(
�1)j�j j : (5.38)Retracing the steps leading to the �rst bound, we arrive atXC;SuppC3x�� @@�i�T(C)�� ecjCj 6 Xn > 1n�X�3x e�(
�c�1�2�)j�j �n (5.39)and since Pn > 1 n"n = "=(1 � ")2, we obtain the bound if 
 is large enough.3. High temperature expansionsWe prove Theorem 3.1 by means of high temperature expansions. The idea is toobtain a convergent expansion for the free energy in terms of clusters, with a weight thatis analytic in � and �.Z� = Tr e��PA�� T�A = Xm > 0 XA1;:::;Am�� (��)mm! TrH� T�A1 : : : T�Am : (5.40)To each choice of A1; : : : Am corresponds a choice of k connected, disjoint sets A1; : : : ;Ak.We �rst sum over sets fAig, then over compatible fAjg; observing that [TAi ; TAj ] = 0when Ai � Ak, Aj � A` and k 6= `, we �ndZ� = XfA1;:::;AkgAi 6eAj Xm1 > 1 XA11;:::;A1m1[iA1i=A1 ::: Xmk > 1 XAk1 ;:::;Akmk[iAki=Ak(��)m1+:::+mk(m1 + :::+mk)! (m1 + :::+mk)!m1! : : : mk! TrH� T�A11 : : : T�A1m1T�A21 : : : T�Akmk : (5.41)We call A a polymer and de�ne its weight:�(A) = S�jAj Xm > 1 XA1;:::;Am[iAi=A (��)mm! TrHA T�A1 : : : T�Am : (5.42)The partition function takes the formZ� = Sj�j XfA1;:::Akg kYi=1 �(Ai); (5.43)



3. HIGH TEMPERATURE EXPANSIONS 57where the sum is restricted to sets of disjoint polymers. In order to apply our swarmexpansion, we must check that the weight of the polymers is small.j�(A)j 6 S�jAj e�cjAj Xm > 1 �mm! XA1;:::;Am�A XnA2
A��hnAjT�A1 : : : T�Am jnAi�� ecPmj=1 jAj j6 e�cjAj Xm > 1 �mm! hjAjXA3x kT�A k ecjAj im6 e�(c�1)jAj ; (5.44)since �PA3x kT�A k ecjAj 6 1.Analyticity of the free energy follows from Proposition 5.3. Concerning the expectationvalues of local operators, we de�ne AK to be a polymer containing SuppK, and�K(AK) = S�jAK jhTrHAK K + Xm > 1 XA1;:::;Am[iAi[SuppK=AK (��)mm! TrHAK KT�A1 : : : T�Ami:(5.45)Proceeding as before, we �nd a boundj�K(AK)j 6 kKk ecj SuppKj e�(c�1)jAK j : (5.46)Next TrK e��PA�� T�A = Sj�jXAK �K(AK) XfA1;:::AkgAi 6eAK kYi=1 �(Ai); (5.47)and from cluster expansions we gethKi� =XAK �K(AK) expn� XC;SuppCeAK �T(C)o; (5.48)in this expression, the sets AK and clusters C are in the volume �. The thermodynamiclimit clearly exists, since �K and �T have exponential decay.
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CHAPTER 6The Pirogov-Sinai theory of �rst-order phase transitions1. GeneralitiesIf we observe a thermodynamic system at a point of �rst-order phase transition, we seelarge domains with pure phases inside. Any local measurements would reveal one of thephases, i.e. there is coexistence of di�erent phases. For instance, consider molecules H2Oat temperature 100oC (and at atmospheric pressure); in a system close to equilibrium, wesee bubbles of gas inside of the liquid, or dropplets of liquid inside of the gas.Bubbles or dropplets are essentially spherical | or they would be in absence of grav-itation; this means that the system tends to minimize the boundary between liquid andgas. More precisely, the surfaces that separate liquid and gas yield a surface tension.Phase coexistence and surface tension are two phenomena related to �rst-order phasetransitions.In classical lattice models of Statistical Physics, there are mathematical objects leadingto the existence of a surface tension at low temperatures, the contours. These objects areone of the main ingredients of the Pirogov-Sinai theory. We introduce in Section 4 anabstract contour model, i.e. a system of Statistical Physics where con�gurations are givenin terms of sets of contours, and the weight of a con�guration is a product of activities ofcontours.Using two properties on the contours, namely an energy estimate: the activity ofa contour is exponentially small with respect to its size, and an entropy estimate: thenumber of contours of given length, containing a given site, goes at most exponentiallywith its length, the free energy of the system can be expressed as a convergent serie ofclusters of contours. While the second property is true independently of thermodynamicparameters, the �rst property can be generally proven only when the inverse temperature� is larger than some constant �0.Let us consider a system for which the thermodynamic parameters are � and � 2 U �Rs . � may be a chemical potential, or an external magnetic �eld, or both of them, or : : :The relevant quantity for Thermodynamics is the free energy f�;� (more precisely: f�;� isthe free energy per site in the in�nite volume limit), and we are interested in its analyticproperties. Indeed, non analyticity of f�;� is related to phase transitions | if @@�i f�;� isdiscontinuous at � = �c, then �c is a point of �rst-order phase transition.U decomposes into regions where the free energy is analytic; such a decompositionis called a phase diagram. Hereafter we restrict our considerations to systems at lowtemperatures, starting the study by the zero-temperature case.Zero-temperature phase diagram. The limit lim�!1 f�;� = e�0 is the groundenergy of the system. In the framework of the Pirogov-Sinai theory, we give ourselves a setof reference con�gurations G, jGj = p, which are possible ground states of the system: forall � 2 U , we suppose that the set of periodic ground states G� is a subset of G. Thereforee�0 = e�(g) with g 2 G�. Thermodynamic quantities are associated with derivatives of59



60 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSa thermodynamic potential, here e�0 . Assuming that the energy of a given con�gurationis analytic in � (often it is a linear function), we have that at zero temperature, the freeenergy e�0 is analytic on each domainM1(g) = f� 2 U : g 2 G�g:In Thermodynamics one often considers lines in the space of thermodynamic parame-ters, and the natural question is whether the changes of observables are smooth. Considerhere a line [t1; t2] 3 t 7! �(t) 2 U , such that there is tc 2 (t1; t2):G�(t) = 8><>:fg(1)g if t 2 [t1; tc)fg(1); g(2)g if t = tcfg(2)g if t 2 (tc; t2]:This describes a �rst-order phase transition: since e�(t)(g(1)) 6= e�(t)(g(2)) if t 6= tc, wehave in general a discontinuity of the derivatives of e�(t)0 = min(e�(t)(g(1)); e�(t)(g(2)) at�c = �(tc).Low temperature phase diagram. The discussion above concerns the case of tem-perature zero, and its relevance for Physics is not obvious. The aim of the Pirogov-Sinai theory is to show that it remains true in a domain of (inverse) temperature [�0;1].Namely, we shall construct p di�erent functions f�;�(g), g 2 G, such that� ming2G f�;�(g) is the free energy of the system;� lim�!1 f�;�(g) = e�(g), g 2 G;� f�;�(g) is analytic in the domainM�(g) = f� 2 U : f�;�(g) = ming02G f�;�(g0)g:The discussion of the case of temperature zero then extends to small temperatures.Under the further assumptions that the zero-temperature phase diagram is linearly regular(see Chapter 2), it can be proven that the phase diagram at inverse temperature � is a smalldeformation of the zero-temperature one. Furthermore, if f�;�(g) is minimum, the typicalcon�guration is g everywhere except for small islands. More precisely, the expectationvalue of observables is close to the value in the ground con�guration g, and correlationsdecay exponentially fast.The functions f�;�(g) are called metastable free energies, a name that comes fromtheir construction. We shall consider restricted partition functions, where only \small"excitations are allowed. This \smallness" is a notion that depends on the di�erencef�;�(g) � ming02G f�;�(g0) | the smallest the di�erence, the weakest the condition. Iff�;�(g) is minimum, there is no restriction and it coincides with the true free energy.To explain the notion of metastability, let us suppose that some stochastic dynamicshas been de�ned on our lattice system (for instance a Glauber one). Consider a line inthe thermodynamic parameters [t1; t2] 3 t 7! �(t) 2 U as before, i.e. there is tc 2 (t1; t2)with �(t) 2 8><>:M�(fg(1)g) if t 2 [t1; tc)M�(fg(1); g(2)g) if t = tcM�(fg(2)g) if t 2 (tc; t2]:Here, for Q � G, M�(Q) + \g2QM�(g) n [g=2QM�(g), and M�(g) was de�ned above.We start with t = t1 and let the system evolve for a long time. The typical con�gurationis g(1) essentially everywhere. Increasing the value of t up to tc, there is no substancial



1. GENERALITIES 61change. Crossing tc, however keeping t � tc small, the system remains for a while in thephase g(1), with small excitations appearing and disappearing. This is a metastable state,that will be eventually destroyed when a big excitation will appear; this excitation willnot disappear, but on the contrary will continue to increase, to cover a large domain. Thewhole volume will no longer be in the state g(1) | actually, we shall obtain a phase closeto g(2), after a su�ciently long time.The name of \metastable free energy" for the energy of a model where only smallexcitations are allowed, the restriction depending on the \instability parameter" f�;�(g)�ming02G f�;�(g0), is judiciously chosen.These ideas started with Peierls more than sixty years ago [Pei 1936]. He introducedthe notion of contour for the Ising model, and showed that the magnetization is strictlypositive at low temperature. Since it is zero at high temperature, this implies a phasetransition with symmetry breaking when the temperature is decreased. Strangely, thecontroversy about the description of phase transitions did not make use of this result.1Peierls' ideas were ignored during thirty years, until Dobrushin and Gri�ths [Dob 1965,Gri 1964]. The symmetry between the phases is that of spin 
ips. The situation whenthis symmetry is a translation was treated in [Dob 1968]. More involved is the case withre
ection or rotation [Hei 1974].The Peierls argument does not directly apply to systems where the ground states arenot related with some symmetry. The generalization to this situation was done by Pirogovand Sinai [PS 1975, Sin 1982]. Actually, it is more than a technical extension | thenotion of metastable free energies, for instance, acquires its full meaning when the thermal
uctuations are di�erent for di�erent phases. It also makes useless the complications of[Hei 1974].The theory bene�tted of improvements from the Prague School [KP 1984, Zah 1984,HKZ 1988]. The extension to systems with complex interactions was done in [BI 1989], inview of an application to �elds theory; the paper is based on ideas of Zahradn��k [Zah 1984]and constitutes a useful working reference. There exist two reviews by Koteck�y; [Kot 1994]is a pedagogical study of a simple model, while [Kot 1995] contains more general discus-sion.2 A presentation of the Pirogov-Sinai theory with statements and explanations canbe found in [EFS 1993].Among the extensions of the Pirogov-Sinai theory, there are studies of interfaces[HKZ 1988, HZ 1998], potentials with long-range interactions [Park 1988], systems withdegeneracies and residual entropy [GS 1988], systems with degeneracies for which thephases are stabilized by the thermal 
uctuations [BS 1989], �nite-size scaling [BK 1990,BK 1994], continuous spin models [Zah 1998]. Phase diagrams with an in�nite num-ber of ground states on a line of coexistence at temperature zero were considered in[BJK 1996, NOZ 1998]; in some situations, the line is absent at �nite temperature, andthe free energy is analytic.In the domains of the phase diagram where a single state has minimal metastablefree energy, the stability of the corresponding Gibbs state with respect to any boundary1The relevance of lattice models for understanding phase transitions seems to have been consideredas very poor. Kramers already noticed in 1936 that for di�erent values of the magnetic �eld, the thermo-dynamic limit of the free energy may yield functions that cannot be joined analytically [H. A. Kramers,Commun. Kammerlingh Onnes Lab. 22, suppl 83, 1 (1936)]. This is described in M. Dresden, Kramers'scontributions to Statistical Mechanics, Physics Today, September 1988.2It also includes a beautiful 3D picture, showing the magnetization of the Ising model as a functionof temperature and magnetic �eld.



62 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSconditions was shown in [LM 1997]. Here we prove the \thermodynamic stability" of theGibbs states with respect to small perturbations, periodic or not (see Theorem 6.4 forprecise signi�cation).Finally, let us mention the applications to quantum systems, [Pir 1978, BKU 1996,DFF 1996, DFFR 1996, BKU 1997, KU 1998], that we discuss in Chapters 7 and 8.2. The Ising model { notion of contoursThe Ising model is the simplest model of Statistical Physics where a �rst-order phasetransition occurs. At low enough temperature, this can be proven by the Peierls argument[Pei 1936, Dob 1965, Gri 1964].The Ising model describes a system of spin 12 on a lattice; for this reason we shall denotecon�gurations of spins by s� (rather than n�). The single site state space is 
 = f�1;+1g,and the Hamiltonian with \+" boundary conditions isHIsing�;+ (s�) = �J X<x;y>��(sxsy � 1)� hXx2� sx � J Xx2@1� sx (6.1)where the �rst sum runs over pairs of nearest neighbours. The last term could also bewritten as nearest neighbour interactions between spins inside and outside of the volume.We restrict our interest to a two-dimensional system and J 2 C must have positive realpart. Actually, this model with complex interactions has not great physical relevance, butit constitutes an easy example that requires the use of cluster expansion techniques.We introduce the contours as closed paths in the dual lattice that separates spins ofopposite spins, see Fig. 6.1. Let us denote 
1, : : : , 
n the contours, and � = f
1; : : : ; 
ng
Figure 6.1. A con�guration of the two-dimensional Ising model, and its contours.an admissible set of contours, i.e. a set of mutually disjoint contours. To any con�gurations� corresponds a unique admissible set of contours �(s�), and when h = 0 the energy ofa con�guration can be expressed asHIsing�;+ (s�) = 2J X
2�(s�) j
j; (6.2)where j
j is the length of 
. The partition function takes the following formZ�;+ =X� Y
2� e�2J�j
j : (6.3)



3. THE BLUME-CAPEL MODEL { NOTION OF METASTABLE FREE ENERGY 63If � is large enough, we can use the cluster expansion to compute the free energy. Moreinteresting, let us focus to the magnetization at a given site x 2 �:hsxi�;+ = h I�sx = +1�i�;+ � h I�sx = �1�i�;+= 1� 2h I�sx = �1�i�;+: (6.4)Showing that Rehsxi�;+ > " > 0 (uniformly in �) amounts to show that h I�sx = �1�i�;+is small. The condition sx = �1 implies that x is surrounded by an odd number of contours;thus there is at least one, so that��h I�sx = �1�i�;+�� 6 X
�x�� e�2J�j
j �����P�:�[f
g admissibleQ
02� e�2J�j
0jP�Q
02� e�2J�j
0j ���: (6.5)where 
 � x means that 
 surrounds x.If J 2 R+ the fraction is smaller than 1, and we �nd a bound by omitting it. Then it isnot hard to show that the sum over contours surrounding a given site, with a contributione�2J�j
j , is as small as we want by taking � large enough. From this we conclude thathsxi�;+ > 0 at su�ciently low temperature, hence the magnetization of the system isstrictly positive. This concludes the usual Peierls argument.Here, we have to deal with a complex J . Using Proposition 5.1, and with S denotingclusters (or swarms), we haveX�:�[f
g admissible Y
02� e�2J�j
0j = expn XS: 
0\
=?8
02S�T(S)o (6.6)and the same expression for the denominator, but without the restriction on clusters whoseelements do not intersect 
. Therefore��h I�sx = �1�i�;+�� 6 X
�x e�2Re J�j
j ���expn� XS:9
02S;
0\
 6=?�T(S)o���: (6.7)It is not hard to show that the sum over clusters intersecting a contour 
 can bebounded by �j
j, with � as small as we need by choosing � large enough. See (5.25) fora related statement, which formally does not apply here because the contours are notsubsets of Z2. Then ��h I�sx = �1�i�;+�� 6 X
�x e�Re J�j
j : (6.8)The sum over contours can be estimated by �rst summing over the length ` of 
; secondchoosing an initial segment for the contours ( 6 `2); and third there are 3 choices for thenext segment, then 3 again, : : : , and this yields a bound 3`.��h I�sx = �1�i�;+�� 6 X` > 4 `23` e��Re J` : (6.9)If �Re J is large enough, this sum is small.3. The Blume-Capel model { notion of metastable free energyAfter this introduction to contours through the example of the Ising model, let us havean illustration of metastable free energies by considering the Blume-Capel model. Thisheuristical discussion can be found in [BL 1984] and [Sla 1987].



64 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSThis model describes spin 1 particles on a two-dimensional square lattice. The singlesite state space is 
 = f�1; 0;+1g, and the Hamiltonian (with free boundary conditions)HBlume-Capel� = X<x;y>��(sx � sy)2 � �1Xx2� s2x � �2Xx2� sx: (6.10)The zero temperature phase diagram has three domains, the ground states being the threetranslation invariant con�gurations s(�1), s(0), s(+1), with s(j)x = j for all x 2 Z�. This isa regular phase diagram, and the point of maximal coexistence is �0 = (0; 0). It is givenby the equation e�(s(�1)) = e�(s(0)) = e�(s(+1)), i.e. it is the point where the energies ofthe three translation invariant con�gurations are equal.To understand the physics of the low temperatures, we have to look on excitations.Consider the con�guration s(+1); the di�erence of energy when one spin is 
ipped into 0is 4 (the number of neighbours of a site). Let us neglect all other excitations, since theycost more energy, and de�ne f��(s(+1)) as the logarithm of a restricted partition function,with a sum over con�gurations containing only this type of excitations (which can appearmany times): f��(s(+1)) ' � 1�j�j log Xk > 0 1k!�j�j e�4� �k = � 1� e�4� :For symmetry reasons f��(s(�1)) is the same. It is however di�erent for f��(s(0)), becausethere are two types of excitations, namely the 
ip of a spin 0 into +1, or into �1.f��(s(0)) ' � 1�j�j log Xk1 > 0 1k1!�j�j e�4� �k1 Xk2 > 0 1k2!�j�j e�4� �k2= � 2� e�4� :Therefore we have f��(s(0)) < f��(s(�1)) if � < 1, so we expect that the point � = (0; 0)belongs to the domain of the phase \s(0)" at low temperature. This heuristic discussion canbe continued to take into account the parameter � = (�1; �2); the equation f��(s(�1)) =f��(s(0)) = f��(s(�1)) characterizes the point �0(�), the intersection of the three domains,while the coexistence lines may be obtained by equalling the corresponding f��(�). Thesefunctions are good approximations of the metastable free energies that are de�ned in thesequel.
�1

�2
00 s(0) s(+1)s(�1) �1

�2
00 s(0) s(+1)s(�1)Figure 6.2. Phase diagrams of the Blume-Capel model, at zero and low temperature.



4. SETTING AND PROPERTIES 654. Setting and propertiesWe now generalize the considerations of the previous section and formulate a theoryvalid for a large class of models, that can be put into a contour one. The followingde�nitions are rather abstract, since no Hamiltonian is ever mentioned.3 The reader canhowever keep in mind concrete models, as for instance the Blume-Capel one.Let G = fg(1); : : : ; g(p)g a set of periodic con�gurations that we call reference states.U � Rp�1 is the space of (p � 1) thermodynamic parameters � = (�1; : : : ; �p�1). Theenergies of the reference states are e�(g(1)), : : : , e�(g(p)); they are analytic functions of� in U . We set e�0 = ming2G e�(g). The zero-temperature phase diagram is given by thehomeomorphism described in Chapter 2, Section 2.4. The degeneracy breaking conditionin its stronger form (2.26) is assumed to hold (i.e. the phase diagram is linearly regular),and ��� @@�i e�(g)��� 6 1: (6.11)Classical lattice models are living on lattices that are subsets of Z�. However, ourexpansion of quantum models (see Chapter 7) yields a contour model on a lattice � �f1; 2; : : : ;Mg per, � � Z�; there is one more dimension, which is �nite and periodic. Thismotivates to consider the following lattice; with �� > � (and � > 2),� = �� f1; : : : ;M1g per � � � � � f1; : : : ;M����g per:� � Z�� is �nite. The thermodynamic limit will still be denoted lim�%Z�, and means asequence of increasing volumes (�n) with �xed M1; : : : ;M���� . � per is the torus � per �f1; : : : ;M1g per � � � � � f1; : : : ;M����g per.A contour is a pair (suppY; �Y ); the �nite, connected set suppY � Z�� is the supportof Y . Let C(x) � R�� be the unit cell centered on x 2 R�� . The boundary of Y is@Y = @ SuppY , where for B � Z��, @B + @ [x2B C(x) (if A � R�� , @A + A \Ac). �Yis then a labelling that attributes an element g 2 G to each connected component of @Y .j@Bj 2 N is the number of (�� � 1)-dimensional faces in @B.A contour con�guration, or admissible set of contours, is a set Y = fY1; : : : ; Yng suchthat (SuppY + [Y 2Y SuppY )� SuppYi 6e suppYj if i 6= j,� the boundary of each connected component of (SuppY)c has constant labelling.An example of a contour con�guration is displayed in Fig. 6.3. Remark that the contoursof the Ising model, as de�ned in Section 2, do not agree with the de�nition. However, ifwe really want to put the Ising model into this framework, a standard way is to de�ne theset of excitations of a con�guration, E(s) = fx 2 Z� : 9y; jy � xj = 1; and sx 6= syg; thenthe contours are connected components of E(s), together with the information on whichphases are on their boundaries.We need a few more de�nitions. The exterior ExtY of a contour Y is the uniquein�nite connected component of (SuppY )c. The g-interior Intg Y is the union of the �nitecomponents of (SuppY )c which have labels � = g; the interior of Y is Int Y = [g2G Intg Y .3It is not only true that di�erent models would lead to di�erent de�nitions of contours; a given modelcan by itself have di�erent interpretations. This point was noted in a presentation of M. Zahradn��k inChura�nov (October 1995): at the end of the talk, there was a little confusion;Christian Borgs: { Milo�s, what is now a contour?M. Z. : { Well, I would say, it's a matter of personal choice...



66 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSY1
Y2

Y3
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Figure 6.3. Schematic picture for an admissible set of four contours. The boundariesof the supports of contours are thin, resp. thick, when � = g(1), resp. g(2).The volume is VolY = SuppY [ IntY � Z�� and the diameter is diamY = diamSuppY .Finally, Y is a g-contour if ExtY has label g.Given a contour con�gurationY in a �nite volume�, we de�ne SuppY = [Y 2Y SuppY ,and Wg(Y) as the union of the connected components of (SuppY)c that have labels� = g on their boundaries. With these de�nitions, the following relations are valid:[gWg(Y) [ SuppY = �, Wg(Y) \VolY = Intg Y , : : :� 2 [�0;1] is as before the inverse temperature. We give ourselves a weight for thecontours; z�;� is a mapping from the set of contours into C , that is analytic in � and �in the domain U � [�0;1]. It is translation invariant [that is, z�;�(txY ) = z�;�(Y )], andwe have uniform exponential bounds:��z�;�(Y )�� 6 e��e�0 jSupp Y j e�
j Supp Y j ; (6.12)��� @@�i z�;�(Y ) e�e�0 j SuppY j ��� 6 e�
j SuppY j ; (6.13)for a large enough constant 
, and lim�!1 z�;�(Y ) = 0: (6.14)The �rst inequality is usually referred to as the Peierls condition. In the sequel we shalloften write O( e�
 ) for a number that is bounded by C � e�
 , the constant C dependingon �� and p only.The partition function of a contour model with boundary conditions g0 2 G is byde�nition Zg0(�) = XY�(@ VolY)=g0 Yg2G e��e�(g)jWg(Y)j YY 2Y z�;�(Y ) (6.15)where the sum is over all contour con�gurations in �, compatible with the boundarycondition. In particular, Zg0(?) = 1.We summarize the results of the Pirogov-Sinai theory in the following theorem, theproof of which will be described in the next sections.



4. SETTING AND PROPERTIES 67Theorem 6.1. Stability of the phase diagram.Assume that for all (�; �) 2 U�[�0;1] our contour model satis�es all the assumptionsin this section, with 
 > 
0, 
0 being a constant that depends on �� and p only. Thenthere exist p continuously di�erentiable functions f�;�(g), g 2 G, with the properties� lim�!1 f�;�(g) = e�(g), g 2 G.� If Re f�;�(g0) = ming2GRe f�;�(g), then f�;�(g0) is the free energy of the system.� f�;�(g) is analytic on the domainM(g) = �(�; �) 2 U � [�0;1] : Re f�;�(g) = ming02GRe f�;�(g0)	: (6.16)� For all � 2 [�0;1], there exists �0(�) 2 U such that Re f�0(�);�(g) = Re f�0(�);�(g0),g; g0 2 G, and the matrix of derivatives� @@�i �f�;�(g(j))� f�;�(g(p))��1 6 i;j 6 p�1has an inverse that is uniformly bounded in � 2 U .As a consequence, the phase diagram at inverse temperature � has the same topologicalstructure as the zero-temperature one. Furthermore, the point of maximal coexistence�0(�) is C1 in �, by the inverse function theorem.Correlation functions and order parameters play an important role in Statistical Physics,so that results about the expectation values of local observables in the thermodynamiclimit merit a discussion. Let us include them into our general contour model.Here the name \observables" does not refer to a function on the phase space | werather have in mind observables in the original spin model. Hence it is necessary to precisethe meaning in the context of the contour model. The structure is as follows.We are given a �nite set fKigi2I of observables with disjoint supports.� Ki, i 2 I, is a function G! C ; we associate to it a �nite number4 CKi and we setCK =Qi2I CKi .� They have supports: SuppKi � Z��, jSuppKij <1, SuppKi 6eSuppKj if i 6= j.� A K-contour YK is such that there exists J � I (J 6= ?): SuppYK � [i2J SuppKiand SuppYK 6 e [i=2J SuppKi; there is a weight zK : fYKg ! C , satisfying thebound jzK(YK)j 6 e��e�0 j SuppYK j e�
j Supp YK j Yi2J CKi :The expectation value of K = Qi2I Ki with boundary conditions g0 (g0 2 G) | inthe context of the general contour model | is de�ned asDYi2I KiE�;g0 = 1Zg0(�)XYK XY:YK ;K Yg2Gh e��e�(g)jWg(YK[Y)j Yi2I:SuppKi�Wg(YK[Y)Ki(g)iYYK2YK zK(YK) YY 2Y z�;�(Y ): (6.17)The �rst sum is over sets YK of K-contours; the second sum is over sets of usual contours,such that YK [ Y is admissible and compatible with the boundary condition g0 andSuppY 6 eSuppK. The contribution of Ki is either with a factor Ki(g), if SuppKi �Wg(YK [Y), or with a K-contour YK , if SuppKi � YK .4Think on the norm of Ki.



68 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSClassical lattice models can be put into this setting, and also quantum models, aswe shall see in the next two chapters. Typical applications are when jIj = 1 (orderparameters) and jIj = 2 (correlation functions).The Pirogov-Sinai theory brings the following properties.Theorem 6.2. Local observables.For all � > 0, there exists 
0 < 1 such that if the assumptions of this section holdwith 
 > 
0 for all (�; �) 2 U � [�0;1], then if Re f�;�(g0) = ming2GRe f�;�(g),� the thermodynamic limit of the expectation value of local observables with boundaryconditions g0, hKig0 = lim�%Z�hKi�;g0 ;exists;� h�ig0 represents a \g0-phase": for all K,��hKig0 �K(g0)�� 6 �CK ;� this state is exponentially clustering: letd(K) = mini;j2I;i 6=j dist(SuppKi;SuppKj);then there exists � = ��;�(g0) > 0 such that���DYi2I KiEg0 �Yi2IhKiig0 ��� 6 c(jIj)CK exp��d(K)=��;with c(jIj) a constant that depends only on the number of local observables.Periodic boundary conditions are often considered, because corresponding volumeshave no boundary and this may bring many technical simpli�cations. The partition func-tion of the contour model with periodic boundary conditions is given byZ per(�) =XY Yg2G e��e�(g)jWg(Y)j YY 2Y z�;�(Y ) (6.18)where � has periodic boundary conditions in all �� directions; Y must be admissible.The expectation value of a local observable K is de�ned by (6.17) with the followingmodi�cations: the supports of the contours are subsets of the ��-dimensional torus �; thenormalization factor is 1=Z per(�); and YK [Y must be admissible.Let M(Q) = \g2QM(g) n [g=2QM(g) with M(g) given in (6.16). M(Q) is the set ofthermodynamic parameters (�;�) where the set of pure phases is Q.Theorem 6.3. Periodic boundary conditions.Under the same assumptions as in Theorem 6.2, the expectation values of a localobservable with periodic boundary conditions exists in the thermodynamic limit; moreover,if (�; �) 2M(Q), hKi per = 1jQjXg2QhKig:An important assumption for Theorems 6.2 and 6.3 is that the weights are translationinvariant. This means that the original spin model is also translation invariant. In fact,periodic systems can be transformed into translation invariant ones by considering a latticeof parallelipipeds in Z�, the dimensions of the parallelipipeds being equal to the periodsof the interaction. We can de�ne a new model with larger single site state space (and



4. SETTING AND PROPERTIES 69smaller range), that has translation invariance. However, the bigger the period, the biggerthe constant 
0 for the assumption on the bound of the weights.This brings problems when considering models with a small perturbation, not nec-essarily periodic | this situation occurs when de�ning thermodynamically stable states,see Section 3.3, Chapter 2. This is the reason why we need the following complement toTheorems 6.2 and 6.3.Theorem 6.4. Thermodynamic stabilityConsider a contour model with weights z�;�;� and z�;�;�K , analytic in (�; �; �) 2 U �[�0;1]� [0; �0], and with uniform Peierls condition and bounds on derivatives. z�;�;� andz�;�;�K are not necessarily translation invariant. We suppose that for each contours Y andYK, z�;�(Y ) � lim�!0 z�;�;�(Y )z�;�K (YK) � lim�!0 z�;�;�K (YK)are translation invariant.Let f�;�(g), g 2 G, be the functions given by Theorem 6.1. Then for all g 2 G, andall (�; �) 2M(fgg), there exists �� > 0 such thathKi�;�;�per = lim�%Z�hKi�;�;�� perexists for all � 2 [0; ��]. Furthermorelim�!0hKi�;�;�per = hKi�;�g :Notice that we did not de�ne metastable free energies with non-translation invariantweights | their thermodynamic limits do not exist in general. But there is no problemwith expectation values of local observables, since these are local quantities, up to termswith exponential decay.States at coexistence points are not thermodynamically stable. However, we wouldneed such a notion in order, for instance, to exclude super
uidity in the chessboard phaseof the Bose-Hubbard model. This would be achieved by the following property, which iscertainly true.Conjecture. Consider weights z�;�;�, z�;�;�K which are periodic5 with respect to lat-tice translations (with arbitrary period). Then, if (�; �) 2M(Q),lim�!0 lim�%Z� 1j�j Xx2�
txK���;per =Xg2Q cghKigwith cg > 0, Pg2Q cg = 1; these coe�cients depend on the weights.In the case of the super
uidity order parameter, we have K = cy0, and the weightsz�;�;�, z�;�;�K are those of a system with external �eld �Px2�(cyx + cx). In this caseK(g) = 0 for any x; g, and lim�!0 z�;�;�K (Y ) = 0. This implies [see (6.17)] that hcy0ig = 0;from the conjecture, we can conclude that there is no o�-diagonal long-range order in thechessboard phases of the Bose-Hubbard model.5To allow interfaces, it would be nice not to need periodicity.



70 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONS5. Positive weights: a discussionThe physics of the Pirogov-Sinai theory is that of classical lattice systems, where theweights z�;� take real positive values. In view of the application to quantum models, wehave to allow complex values, but this brings some extra di�culties; moreover, it loses itsphysical meaning. It is then a moral duty to present �rst the theory in a restricted butconceptually meaningful form, and to postpone the general case to a later section. In thefollowing, �0, �00 are any simply connected subsets of �.The basic mathematical tool for the Pirogov-Sinai theory is cluster expansions. How-ever it is impossible to apply directly Proposition 5.1, because the compatibility relationbetween the contours is rather complicated; the condition with the labels can be viewed asa long-range interaction between the contours. The idea to solve this problem is to de�nenew weights for g0-contours byz(Y ) = z�;�(Y ) e�e�(g0)j Supp Y j Yg2G Zg(Intg Y )Zg0(Intg Y ) : (6.19)A contour Y is external if SuppY \VolY 0 = ? for all Y 0 2 Y. The partition function canbe written asZg0(�0) = XfY1;:::;Ykgexternal g0-contours e��e�(g0)j�0n[j VolYj j kYj=1hz�;�(Yj)Yg2GZg(Intg Yj)i (6.20)where the sum is over non-intersecting, external g0-contours. Dividing and multiplyingZg(Intg Yj) by Zg0(Intg Yj), and iterating, we obtainZg0(�0) = e��e�(g0)j�0j XfY1;:::;Yng nYj=1 z(Yj); (6.21)where the sum is over sets of disjoints g0-contours. The compatibility condition is nowexactly that of polymers, so we can apply cluster expansion, provided the decay is stillstrong.Equations (6.19) and (6.21) propose a nice viewpoint on the theory. So let us make aheuristical break.If the weights z(Y ) have su�ciently strong exponential decay with respect to the sizeof Y , it can be shown that they are rare; this means that the system is in the \g0-phase",with typical con�gurations being equal to g0 except for some small islands. With ~f(g0)the free energy of this phase,6 we haveZg0(�0) ' e�� ~f(g0)j�0j(with a correction due to boundary e�ects of the order eO( e�
 )j@�0j ).But a di�erent scenario may also happen. Suppose that the system should be in theg-phase, and we are looking at Zg0(�0). Then if �0 is large enough, typical con�gurationswill have a large contour Y 0 with a large interior Intg Y 0 ' �0. In this case, since z�;�(Y 0) 'e�
j Supp Y 0j (here in the discussion we set e�0 = 0),Zg0(�0) ' e�
j@�0j e�� ~f(g)j�0j> e�� ~f(g0)j�0j : (6.22)6To be precisely de�ned below.



5. POSITIVE WEIGHTS: A DISCUSSION 71If such a scenario takes place, then a contour Y that has a su�ciently large interior Intg Ywill have a g0-weight z(Y ) ' z�;�(Y ) e�� ~f(g)j Int Y je�
j Supp Y j e�� ~f(g)j Int Y j' 1:Equation (6.22) suggests that z has su�cient decay if f(g0) < f(g), or if Y is not too big:e�
j Supp Y j e�� ~f(g)jVolY j < e�� ~f(g0)jVolY j() ~f(g0)� ~f(g) < 
� jSuppY jjVol Y j ' 
� 1diamY : (6.23)This shows that the size of the contours may play a role, and that a natural parameterto characterize the instability due to contours is �( ~f(g0) � ~f(g)). The conclusion of thisdiscussion is that a contour may destabilize a phase if it creates a large domain with aphase that has lower free energy inside; such a contour pays on its boundary but gains onits volume, and if the latter is big compared to the former, it is likely to occur.Let us end this break now and go on with mathematics.We de�ne truncated g0-weights~z(Y ) = (z(Y ) if z(Y ) 6 e�(
�2��)j Supp Y j0 if z(Y ) > e�(
�2��)j SuppY j : (6.24)If 
 is large enough, these new weights satisfy the assumptions for the use of the clusterexpansion. The metastable free energies are de�ned as~f�;�(g0) = � 1� lim�%Z� 1j�j log e��e�(g0)j�j XfY1;:::;Yngg0-contours nYj=1~z(Yj): (6.25)[Notice that lim�!1 ~f�;�(g) = e�(g) because of (6.14).]Let us de�ne ~ag = � ~f�;�(g) �ming02G � ~f�;�(g0).Proposition 6.5 (Stability of small contours). There exists 
0 < 1 (dependingon �� and p only) such that if (6.12) holds with 
 > 
0, then the metastable free energiesexist. Furthermore if ~ag0 diam�0 6 1, we haveZg(�0)Zg0(�0) 6 ej@�0jWe say that a phase g 2 G is stable if ~f�;�(g) is minimum, i.e. if ~ag = 0. Proposition6.5 implies that z(Y ) 6 e�(
�2��)j Supp Y j for all g-contours Y , therefore ~f�;�(g) is thefree energy of the system. Furthermore the phase diagram at inverse temperature � canbe constructed using the metastable free energies: the domain of the phase g is the setf� : ~ag = 0g, i.e. all � where ~f�;�(g) is minimum.Equation (6.19) makes sense when interiors of contours are disconnected from exterior.In some models this does not hold, although it is clear that phases are charaterized byrarety of contours. Studying such models requires a reformulation of Pirogov-Sinai theory,which is currently being pursued [HZ 1998, Zah 1996].To help in the study of the phase diagram, we de�ne in the next section di�erentmetastable free energies, which are di�erentiable functions of �; �.



72 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONS6. Di�erentiable metastable free energiesThe de�nition (6.24) is slightly inconvenient, because the metastable free energies in(6.25) are discontinuous functions. A remedy could be to proceed as in [Zah 1984] and tode�ne ~z(Y ) = min(z(Y ); e�(
�2��)j SuppY j ):These functions are continuous, but not di�erentiable. Another problem is that when theweights take complex values, the corresponding partition functions can be zero and thede�nition (6.19) does not make sense.A procedure that leads to di�erentiable metastable free energies in the complex casewas proposed in [HKZ 1988, BK 1990]. The iterative method that we employ here follows[BK 1994]; actually, [BKU 1996] contains a simpli�ed form of [BK 1994] which is enoughfor our purpose.We choose a smooth characteristic function � with the following properties:� � is a C1 function.� �(x) = 0 if x 6 �1; �(x) = 1 if x > 1.� 0 6 d�dx (x) 6 1 for all x.We de�ne Ẑg0(?) = 1, f (0)(g0) = e�(g0) for all g0 2 G, f (0)0 = e�0 , and set the countern to 1. Then we enter the iterative procedure.. . . For all g0 2 G, and all g0-contours Y with diamY = n, let�̂(Y ) = Yg2G��2� 4n�[Re f (n�1)(g0)�Re f (n�1)(g)]� (6.26)and ẑ(Y ) = �̂(Y )z�;�(Y ) e�e�(g0)j Supp Y j Yg2G Zg(Intg Y )Ẑg0(Intg Y ) : (6.27)Next we de�ne the partition functions for volumes �0 with diam�0 = n:Ẑg0(�0) = e��e�(g0)j�0j XfY1;:::;Ykg kYj=1 ẑ(Yj); (6.28)where the sum is over disjoint g0-contours in �0.At this stage it is useful to observe the following propertiesLemma 6.6. Iterative lemma.There exists 
0 (that depends on �� and p only) such that if (6.12){(6.13) hold with
 > 
0, then for all Y with diamY = n and all �0 with diam�0 = n,(a) ĵz(Y )j 6 e�(
�2)j Supp Y j ;(b) j @@�i ẑ(Y )j 6 (8�p+ 1)jVol Y j e�(
�2)j SuppY j ;(c) Ẑg0(�0) 6= 0 for all �0, diam�0 = n;(d) jZg0(�0)j 6 exp(��f (n�1)0 j�0j) e 18�� j@�0j ;(e) j @@�iZg0(�0)j 6 a�j�0j exp(��f (n�1)0 j�0j) e 18�� j@�0j .Notice that point (c) allows to de�ne ẑ(Y ) with (6.27) in the next loop of the iteration,i.e. for Y with diamY = n+ 1.



6. DIFFERENTIABLE METASTABLE FREE ENERGIES 73The �nal step of the iteration is to de�nef (n)(g) = e�(g) + lim�%Z�� 1�j�j log XfY1;:::;Ykg kYj=1 ẑ(Yj) (6.29)with the sum over disjoint g-contours in �, with diameter smaller or equal to n. We writef (n)0 = ming2G Re f (n)(g): (6.30)The iterative procedure ends here. . . .Proof of the iterative lemma. Proof of (a): ẑ(Y ) is given by (6.27); since diam Intg Y <n, we can use the claim (d) of the iterative lemma to bound Zg(Intg Y ). We need a lowerbound for Ẑg0(Intg Y ), which we obtain from cluster expansions. Namely, from (6.28),log Ẑg0(Intg Y ) = ��e�(g0)j Intg Y j+ log XfY1;:::;Ykg kYj=1 ẑ(Yj) (6.31)where the sum is over disjoint g0-contours in Intg Y ; ĵz(Yj) 6 e�(
�2)j SuppYj j by thelemma, since diamYj < n. Therefore we can use cluster expansions to getlog XfY1;:::;Ykg kYj=1 ẑ(Yj) = Xx2Intg Y XC;Supp3x �T(C)jSuppCj ; (6.32)all contours of the clusters are inside Intg Y . In particular, their diameters are smaller orequal to n� 1; thenlog XfY1;:::;Ykg kYj=1 ẑ(Yj) = ��j Intg Y j�f (n�1)(g0)� e�(g0)�� XC;SuppC 6�Intg Y �T(C) jSuppC \ Intg Y jjSuppCj : (6.33)The last sum may be bounded by (5.22); this leads to the bound for Ẑg0(Intg Y )Yg2G jẐg0(Intg Y )j > e��Re f(n�1)(g0)j Int Y j e� 18�� j SuppY j : (6.34)If �(Re f (n�1)(g0)� f (n�1)0 ) > 12n , then �̂(Y ) = 0 and also ẑ(Y ) = 0; otherwise, we haveĵz(Y )j 6 e�
j Supp Y j e��(e�(g0)�e�0 )j Supp Y j Yg2G e 14�� j@ Intg Y j e 12n j Intg Y j6 e�(
�1)j Supp Y j e��(e�(g0)�e�0 )j Supp Y j : (6.35)For the last inequality, we used Pg2G j@ Intg Y j 6 2��jSuppY j and diamY jSuppY j >jVol Y j.Finally, e�(g0) cannot be much larger than e�0 . Indeed, from �(Re f (n�1)(g0) �Re f (n�1)(g) 6 12n for all g 2 G, and���e�(g) � f (n�1)(g)�� 6 14by (5.25) with c = 0 and � = 14 , we have �(e�(g0)� e�0 ) 6 1.



74 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSProof of (b):�� @@�i ẑ(Y )�� 6 �� @@�i �̂(Y )����z�;�(Y ) e�e�(g0)j Supp Y j �� Yg2G��� Zg(Intg Y )Zg0(Intg Y ) ��� (6.36a)+�̂(Y )�� @@�i z�;�(Y ) e�e�(g0)jSupp Y j �� Yg2G��� Zg(Intg Y )Zg0(Intg Y ) ��� (6.36b)+�̂(Y )��z�;�(Y ) e�e�(g0)j Supp Y j ��Xg2G��� @@�i Zg(Intg Y )Zg0(Intg Y ) ��� Yg02Gnfgg���Zg0(Intg0 Y )Zg0(Intg0 Y ) ���(6.36c)By the de�nition of �(Y ), we havej @@�i �̂(Y )j 6 Xg2G 4�nj @@�i f (n�1)(g0)� @@�i f (n�1)(g)j: (6.37)Since �f (n�1)(g) has an expansion in terms of clusters, we can use the bounds (5.24) and(6.11) to get j @@�i f (n�1)(g)j 6 2: (6.38)We obtain the bound for (6.36a), namely 8�pdiamY e�(
�2)j SuppY j . The bound for(6.36b) is immediate from (6.13) and the bound for the ratio of partition functions; we�nd (1 + 2�) e�(
�2)j SuppY j .Finally we consider@@�i Zg(Intg Y )Ẑg0(Intg Y ) = @@�iZg(Intg Y )Ẑg0(Intg Y ) + Zg(Intg Y ) @@�i 1Ẑg0(Intg Y ) : (6.39)For the �rst term we combine the bound (e) of the lemma with (6.34); for the second termwe have from (6.33) �Ẑg0(Intg Y )��1 = e�f(n�1)(g0)j Intg Y j ehg0 (Intg Y ) (6.40)where hg0(�0) is a sum over clusters of g0-contours that intersect the boundary of �0;jhg0(�0)j+ j @@�ihg0(�0)j 6 18�� j@�0j. Collecting the four bounds, we obtainj @@�i ẑ(Y )j 6 e�(
�2)j SuppY j h8�pdiamY + 1 + 2� + (a+ 2)�j Int Y j+ jSuppY ji;(6.41)yielding the desired bound.Proof of (c): Cluster expansion can be used to obtain an expansion for the logarithm.It is bounded, therefore Ẑg0 cannot be zero.Proof of (d): Let a(n�1)g0 = �(Re f (n�1)(g0)�f (n�1)0 ); a g0-contour is small if a(n�1)g0 diamY 61, otherwise it is big. We write the partition function asZg0(�0) = XfY1;:::;YkgZ smallg0 (Ext) kYj=1 z�;�(Yj)Yg2GZg(Intg Yj) (6.42)



6. DIFFERENTIABLE METASTABLE FREE ENERGIES 75where the sum is over disjoint, big, external g0-contours in �0. Ext = \nj=1 ExtYj andZ smallg0 (Ext) is the partition function that takes only into account small contours; moreprecisely, Z smallg0 (Ext) = e��e�(g0)jExt j XfY1;:::;Ykg kYj=1 z(Yj); (6.43)the sum being over small, disjont g0-contours in Ext.Let f small(g0) be the free energy corresponding to Z smallg0 . We show that f small(g0) isclose to f (n�1)(g0); with x any site of Z��,f (n�1)(g0)� f small(g0) = XC;SuppC3x �T(C)jSuppCj � XC;SuppC3x; small �T(C)jSuppCj= XC;SuppC3x;big �T(C)jSuppCj ; (6.44)and all the contours in the clusters have diameter smaller or equal to n� 1. Big clusterscontain at least one contour with diameter bigger than 1=a(n�1)g0 ; from (5.25), choosingc = 2, jf (n�1)(g0)� f small(g0)j 6 e�2=a(n�1)g0 6 a(n�1)g02 : (6.45)We obtain the boundjZ smallg0 (Ext)j 6 e��Re f(n�1)(g0)jExt j ea(n�1)g02 jExt j e 116�� j@ Ext j= e��f(n�1)0 jExt j e�a(n�1)g02 jExt j e 116�� j@ Ext j : (6.46)By the iterative lemma at steps before n, we know thatjZg(Intg Y )j 6 e��f(n�2)0 j Intg Y j e 18�� j@ Intg Y j : (6.47)We have to check that f (n�2)0 and f (n�1)0 are close. From (5.25) with c = 1 and � = 1=e,we have for any g0 2 G�jf (n�1)(g0)� f (n�2)(g0)j 6 e�(n�1) 6 1n: (6.48)Let g and g0 such that f (n�1)0 = Re f (n�1)(g) and f (n�2)0 = Re f (n�2)(g0) (possibly g = g0).Then0� 1n 6 �hRe f (n�2)(g)�Re f (n�2)(g0)i+ �hRe f (n�1)(g)�Re f (n�2)(g)i == f (n�1)0 � f (n�2)0 == �hRe f (n�1)(g) �Re f (n�1)(g0)i+ �hRe f (n�1)(g0)�Re f (n�2)(g0)i 6 0 + 1n:Recall that diam Int 6 n; we see here that�jf (n�1)0 � f (n�2)0 jj Int j 6 j@ Int j 6 kXj=1 2��jSuppYj j:



76 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSAt this stage, we havejZg0(�0)j 6 e��f(n�1)0 j�0j e 116�� j@�0j XfY1;:::;Ykgexternal, big g0-contours e�a(n�1)g02 jExt jkYj=1 z�;�(Yj) e�e�0 jSupp Yj j e��(e�0 �f(n�1)0 )j SuppYj j e2��j SuppYj j : (6.49)If e�0 = e�(g), ���e�0 � f (n�1)0 � 6 ���e�(g)� f (n�1)(g)� 6 1: (6.50)jZg0(�0)j 6 e��f(n�1)0 j�0j e 116�� j@�0jXfY1;:::;Ykgexternal, big g0-contours e�a(n�1)g02 jExt j kYj=1 e�(
�2���1)j SuppYj j : (6.51)Let ~f be the free energy corresponding to a polymer model with weights z(Y ) = e�(
�2���2)j Supp Y jwhen Y is big, 0 otherwise, and let ~Z be its partition function (with � = 1). We introduce1 6 e ~f jVolYj j+jSupp Yj j ~Z(Int Yj) (6.52)in the product of (6.51). Since only big contours are present in ~Z, again using (5.25) withc = 2, � ~f 6 e�2=a(n�1)g 6 a(n�1)g =2 (6.53)if 
 is large enough. ThereforejZg0(�0)j 6 e��f(n�1)0 j�0j e 116�� j@�0j e ~f j�0j XfY1;:::;Ykgexternal, big g0-contours kYj=1 e�(
�2���2)j SuppYj j ~Z(Int Yj)6 e��f(n�1)0 j�0j e 18�� j@�0j : (6.54)Proof of (e): Because of lack of time, the proof is not written here. I apologize andrefer to the appendix of [BKU 1996].7. Proofs of the theoremsProof of Theorem 6.1. We use the functions f (n)(g0) constructed by iteration tode�ne the metastable free energies. We set, for all g 2 G,f�;�(g) = limn!1 f (n)(g): (6.55)The limit exists, as well as the limit of derivatives; indeed, it follows from cluster expan-sions, that we can use because of Lemma 6.6 (a) and (b).



7. PROOFS OF THE THEOREMS 77We check now that �̂(Y ) = 1 for all g0-contours Y , when Re f�;�(g0) = ming2GRe f�;�(g).For all n > 0, ���f (n�1)(g0)� f�;�(g0)�� = ��� XC;Supp3xC: > n �T(C)jSuppCj ��� 6 18n: (6.56)The sum is over clusters containing at least one contour with diameter bigger or equal ton; the last inequality follows from (5.25) with c = 1 and � = 18 . Therefore, if Re f�;�(g0)is minimum, ��Re f (n�1)(g) �Re f (n�1)(g0)� > � 14n; (6.57)for all g 2 G, and �̂(Y ) = 1 in (6.26).As a consequence, Ẑg0(�) = Zg0(�) for all �, and the metastable free energy f�;�(g0)is equal to the free energy of the system.The analyticity of f�;�(g0), in the domain where its real part is minimum, is truebecause it has an expansion in terms of clusters with polymers having analytic weights[when Re f�;�(g0) is not minimum, the weights are C1 but not analytic, because so is thefunction �̂(Y )].The last claim is a consequence of the inverse function theorem.Proof of Theorem 6.2. The expectation value of local observables has an expan-sion in terms of contours, see (6.17). K-contours have various external labels, but wewould prefer them to have external label g0.Consider observables K, and a contour con�guration YK [ Y. We gather togethera contour YK 2 YK with contours that surround it. We also consider collections ofcontours surrounding supports of observables. Whenever a contour belongs to two di�erentcollections, we take the union of the collections. See Fig. 6.4 for a concrete example. Wedenote by YK a collection of contours and observables such that one contour surround allothers (this contour can be a usual contour, or a K-contour).Y1
Y2Y3

Y4YK1K1 K2 K3
g0g

Figure 6.4. Five contours and three observables. YK = fYK1g, Y = fY1; Y2; Y3; Y4g;then Y0K = fYKg with YK = fYK1 ; Y1; Y2g and Y0 = fY3; Y4g. Here zK(YK) =zK(YK1)z(Y1)z(Y2)K2(g); the contribution of K3 is a factor K3(g0).



78 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSWe de�ne the weight zK(YK) to bezK(YK) = YYK2YK zK(YK) YY 2YK z(Y )YKi(gi) (6.58)The last product is over those observables Ki such that SuppKi � VolYK , but Ki doesnot belong to any K-contour of YK . The con�guration gi 2 G is chosen according to thelabels of contours of YK . We de�neSuppYK = [YK2YK SuppYK [Y 2YK SuppY [i:SuppKi�VolYK SuppKi:Let J � I denote the observables concerned by YK . We have the bound for zK(YK)jzK(YK)j 6 e��e�0 j SuppYK j e�
j SuppYK j Yi2J CKi e
j SuppKij : (6.59)It is possible to rewrite Equation (6.17) by �rst summing over sets Y0K of collectionsof contours, then over compatible sets of contours, namelyDYi KiE�;g0 = 1Zg0(�)XY0K XY0:Y0K Yi2I:SuppKi 6�Vol(Y0K[Y0)Ki(g0)Yg2G e��e�(g)jWg(Y0K[Y0)j YYK2Y0K zK(YK) YY 2Y0 z�;�(Y ): (6.60)The constraint Y0 : Y0K means that Y0K [ Y0 is admissible and compatible with theboundary conditions g0, and moreover that VolY 6eSuppYK for all Y 2 Y0 and YK 2 Y0K .The next step consists in de�ningzK(YK) = zK(YK) e�e�(g0)j SuppYK j Yg2G Zg(Intg YK)Zg0(Intg YK) : (6.61)This makes sense, since Zg0(�0) 6= 0 when Re f�;�(g0) is minimum. Furthermore, we havethe bound jzK(YK)j 6 e�(
�2)j SuppYK j : (6.62)Remark that in (6.61) interiors of YK are not necessarily simply connected sets, andthe contours in Z�(Intg YK) are required to have simply connected volumes. This makesthe situation slightly di�erent to that of the previous section. However, it is clear that allthe steps can be repeated almost without any change.The expectation value of local observables can be rewritten using (6.61)DYi KiE�;g0 = 1Zg0(�) e��e�(g0)j�j XY0K Yi2I:SuppKi 6�VolY0K Ki(g0) YYK2Y0K zK(YK)XfY1;:::;Ykgg0-contours;Yj�Y0K kYj=1 ẑ(Yj) (6.63)where the last sum is restricted to contours Yj such that VolYj 6e(SuppY0K [ SuppK).We can use cluster expansion for the logarithm of the last sum, as well as for Z�;g0 , so as



7. PROOFS OF THE THEOREMS 79to obtainDYi KiE�;g0 =XY0K Yi2I:SuppKi 6�VolY0KKi(g0) YYK2Y0K zK(YK) exp� XC:Y0K ;K�T(C)�: (6.64)Here, the constraint C : Y0K ;K means that at least one g0-contour of C has volume thatintersects SuppYK [ SuppK.The above expression is absolutely convergent, uniformly in �. This proves the �rstclaim of Theorem 6.2.For the second claim, we note that, in (6.64), the case Y0K = ? yields QiKi(g0);consequently, the di�erence between hKig0 and K(g0) is as in (6.64), but with a sum overnon-empty Y0K . Because of the bound (6.59), and bounds on clusters, we get the claim.To prove the last claim, we write
Yi Ki�g0 = 
Yi Ki�shortg0 + 
Yi Ki� bigg0 ; (6.65)where hQiKiishortg0 is given by (6.64), except for a restriction on the sizes of elements inY0K and clusters. Namely, only collections YK with jSuppYK j < 14d(K) and clusters Cwith jSuppCj < 14d(K) are considered.hQiKii bigg0 involves a sum over Y0K where at least one YK 2 Y0K has bigger support,and a sum over all Y0K , but with a contribution of clustersexp� XC:Y0K ;K�T(C)�� exp� XC:Y0K ;Kshort �T(C)� == exp� XC:Y0K ;Kshort �T(C)�hexp� XC:Y0K ;Kbig �T(C)�� 1i: (6.66)It is clear that we have exponential decay, namely that there exists � such that��
Yi Ki�bigg0 �� 6 e�d(K)=� Yi2I CKi : (6.67)The proof can be completed by expanding each hKiig0 as above, and writing hKiig0 =hKiishortg0 + hKii bigg0 . Since 
Yi Ki�shortg0 =Yi hKiishortg0 ; (6.68)and each hKii bigg0 having exponential decay, we obtain the bound of Theorem 6.2.Because of lack of time, no proof for Theorem 6.3 (expectation values of local observ-ables with periodic boundary conditions) is provided here; we refer to e.g. [BKU 1996].Before entering the proof of Theorem 6.4, let us observe that the weights z�;�;�(Y )converge to z�;�(Y ) uniformly in Y :Lemma 6.7.For any " > 0, there exists �� > 0 such that if � 6 ��,jz�;�;�(Y )� z�;�(Y )j 6 " e� 
2 jSupp Y jfor all contours Y .



80 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSProof. Let us �x ". For any Y such that jSuppY j > 2
 log 2" , we havejz�;�;�(Y )� z�;�(Y )j 6 2 e�
j SuppY j 6 " e� 
2 jSupp Y j : (6.69)On the other hand, for any Y there exists ��(Y ) > 0 such thatjz�;�;�(Y )� z�;�(Y )j 6 " e� 
2 jSupp Y j (6.70)for � 6 ��(Y ). Therefore we can choose�� = minY;jSupp Y j 6 2
 log 2" ��(Y ): (6.71)Proof of Theorem 6.4. Let us de�ne~z(Y ) = z�;�;�(Y )� z�;�(Y ): (6.72)From the lemma, we know that j~z(Y )j 6 " e� 
2 jSupp Y j for all Y , if � is small enough.First let us see that, if ag0 diam� 6 1,e�O(�)j�j 6 ���Z�g0(�)Zg0(�) ��� 6 eO(�)j�j ; (6.73)with Z�g0(�) the partition function with weights z�;�;�.Z�g0(�) = XfY1;:::;YkgYg2G e��e�(g)jWg(fY1;:::;Ykg)j kYj=1�~z(Yj) + z�;�(Yj)�= XfY1;:::;Y`ghỲj=1 ~z(Yj)iZg0(� n [j SuppYj): (6.74)It is not hard to check7 that the ratioZg0(� n [j SuppYj)Zg0(�)may be bounded by Qj ej SuppYj j . Therefore���Z�g0(�)Zg0(�) ��� 6 XfY1;:::;Y`g Ỳj=1 j~z(Yj)j ej SuppYj j : (6.75)The bound (6.73) is now immediate.Since Z�g0(�) 6= 0, the expectation value of K in the model with weights z�;�;� iswell de�ned at �nite volume and is given by (6.63). We can use the standard trick ofPirogov-Sinai theory, namely to de�ne new weightsz�(Y ) = z�;�;�(Y ) e�e�(g0)j Supp Y j Yg2G Z�g (Intg Y )Z�g0(Intg Y ) (6.76)z�K(YK) = z�;�;�K (YK) e�e�(g0)j SuppYK j Yg2G Z�g (Intg YK)Z�g0(Intg YK) : (6.77)7The idea is, of course, to use cluster expansions. The only di�culty is that the volume is notnecessarily simply connected; however, the contribution of the contours that surround the holes of thevolumes can be easily estimated.



7. PROOFS OF THE THEOREMS 81We prove in Lemma 6.8 below that the ratio of partition functions satisfy a bound thatallows to use cluster expansions. Therefore we have an expression similar to that of (6.64).This expansion is absolutely convergent, uniformly in �, which proves the �rst claim ofTheorem 6.4. Furthermore, since jz�(Y )j 6 e�
0jSupp Y j , and similarly for z�K(YK), wehave by Lemma 6.7 that z�(Y )! z(Y ) uniformly in Y , so that we get the second claim.Recall that we de�ned ag = �(Re f�;�(g)� f�;�0 ).Lemma 6.8.Assume that the set fg 2 G : Re f�;�(g) = f�;�0 g has only one element. Then thereexists �� > 0 such that if � 6 �� and ag0 diam� 6 1,� Z�g0(�) 6= 0,� �� Z�g (�)Z�g0 (�) �� 6 e5j@�j .Proof. We proceed by induction on the size of �. The statements are clear when� = ?, and we look now to the situation where diam� = n.By the induction hypothesis, Z�g0(Intg Y ) 6= 0 if Y is a contour in �; the de�nition(6.76) makes sense, andZ�g0(�) = e��e�(g0)j�j XfY1;:::;Ykgg0-contours kYj=1 z�(Yj): (6.78)z�(Yj) has exponential decay; hence Z�g0(�) di�ers from 0 by the cluster expansion.The bound for the ratio of partition functions is proven in a similar way as Lemma6.6 (d). We call \small" a g-contour Y with ag diamY 6 1, Y is \big" otherwise.Z�g (�)Z�g0(�) = 1Z�g0(�) XfY1;:::;Ykgbig, externalZ�; smallg (Ext) kYj=1nz�;�;�(Yj) Yg02GZ�g0(Intg0 Yj)o: (6.79)Here, Ext = \j ExtYj andZ�; smallg (�0) + XfY1;:::;Ykgsmall, external e��e�(g)jExt j kYj=1nz�;�;�(Yj) Yg02GZ�g0(Intg0 Yj)o: (6.80)For small g-contour Yj, and if diam�0 6 n� 1, we can use the induction hypothesisso as to write Z�; smallg (�0) = e��e�(g)j�0j XfY1;:::;Ykgsmall kYj=1 z�(Yj) (6.81)with jz�(Yj)j 6 e�(
�10��)j SuppYj j . Proceeding as in the proof for the bound (6.73), weget jZ�; smallg (�0)j 6 jZ smallg (�0)j eO(�)j�0j6 e��[Re f small(g)+O(�)]j�0j ej@�0j : (6.82)



82 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONSFurthermore f small(g) is close to f�;�(g):�jf small(g) � f�;�(g)j 6 XC;SuppC3xbig j�T(C)jjSuppCj 6 ag=4: (6.83)Let us come back to (6.79); let Supp = [kj=1 SuppYj, and observe thatjZ�g0(�)j > jZ�g0(Ext)j e�Re f�;�(g0)j Supp j e�j@�j�jSupp j kYj=1 jZ�g0(Int Yj)j: (6.84)Therefore���Z�g (�)Z�g0(�) ��� 6 ej@�j XfY1;:::;Ykgbig, external���Z�; smallg (Ext)Z�g0(Ext) ���kYj=1njz�;�;�(Yj)j e[Re f�;�(g0)+1]jSupp Yj j Yg02G���Z�g0(Intg0 Yj)Z�g0(Intg0 Yj) ���o6 e2j@�j XfY1;:::;Ykgbig, external e��[Re f�;�(g)�Re f�;�(g0)]jExt j e[O(�)+ag4 ]jExt jkYj=1 e�(
�1�10��)jSupp Yj j e��[e�0�Re f�;�(g0)]jSupp Yj j :First we observe that���Re f�;�(g) �Re f�;�(g0)�+O(�) = �ag + ag0 +O(�)6 �12ag + 2ag0if � is small enough | we use here the fact that ag and ag0 cannot be zero at the sametime when g 6= g0. Second we estimate e�0 � f�;�(g0). �je�0 � f�;�0 j 6 1 from clusterexpansion, and �(Re f�;�(g0)� f�;�0 ) = ag0 . We obtain���Z�g (�)Z�g0(�) ��� 6 e2j@�j XfY1;:::;Ykgbig, external e� 14ag jExt j e2ag0 (jExt j+jSupp j) kYj=1 e�(
�2�10��)j Supp Yj j :(6.85)Let �Z be a partition function with big g-contours Y having weights e�(
�3�10��)j Supp Y jand �f be the corresponding free energy with � = 1. Since1 6 e �f jVolY j ej SuppY j �Z(IntY );we can write���Z�g (�)Z�g0(�) ��� 6 e2j@�j e2ag0 j�j XfY1;:::;Ykgbig, external e� 14agjExt j kYj=1 e �f jVolYj j e�(
�3�10��)j SuppYj j �Z(Int Yj):(6.86)We obtain the desired bound by using ag0 j�j 6 j@�j, and �14ag 6 �f .



CHAPTER 7Contour representation for quantum modelsThe idea to expand a quantum model around its potential part is not new at all. Itwas proposed by Ginibre thirty years ago, as a tool to establish the existence of phasetransitions in di�erent quantum lattice models [Gin 1969]. The proof combined Trotterformula and Peierls argument. A di�erent approach, that does not make use of the Trotterformula but also rely on the Peierls argument, was simultaneously proposed by Robinson[Rob 1969]. This more algebraic method was used to show that the lattice gas withnearest-neighbour repulsion (antiferromagnetic Ising model) is stable against small kineticmoves [LM 1993].The Trotter formula was used for various studies of quantum lattice models. Kennedy[Ken 1985] proved long-range order in the anisotropic Heisenberg ferromagnet;1 it shouldbe noticed that his method is perturbative in the temperature, but not in the anisotropycoe�cient | for all anisotropy, it is possible to be at low enough temperature and toobserve the chessboard structure. Again with the Trotter formula, the Ising model withstrong transverse magnetic �eld can be shown to have Ornstein-Zernike decay of thetwo-point function [Ken 1991]. A boson model with nearest-neighbour interaction wasproposed in [MS 1996] and the low temperature phases were established; the ground statehas a �nite degeneracy, that is removed by mixed thermal-quantum 
uctuations (ourresults, from this chapter and the next one, are not su�cient to cover this situation). TheFalicov-Kimball was investigated in [MM 1996]; the degeneracy of the ground states of theclassical model was shown to be removed by the quantum 
uctuations. One-dimensionalspin systems were studied by [AN 1994]; using a functional integral representation, thequantum spin chain is mapped onto a two-dimensional Potts model, and studied in arandom-cluster representation.The extension of Pirogov-Sinai theory to quantum lattice models was proposed in[Pir 1978], but was realized only 20 years later [BKU 1996, DFF 1996]. Both papers applyto spin systems, but the latter also deals with fermion systems. An extension to bosons canbe found in [BKU 1997] (with a discussion of the incompressibility of the ground states).A class of models where the ground states of the classical part are in�nitely degeneratedwas studied in [DFFR 1996, FR 1996, KU 1998]; see Chapter 8. Interfaces in quantummodels are discussed in [BCF 1997] (see also [DMN 1998]).1. Duhamel expansionWe consider a system with Hamiltonian H� = T� + V�, where V� is an operatorthat is the quantum equivalent of a classical interaction. T� is a quantum perturbation,as for instance a small kinetic matrix. Our aim is to obtain expansions of the operatore��T���V� ; recall that this operator plays a role in the de�nition of the free energy of thesystem.1A page devoted to the Heisenberg model, and results of Mathematical Physics around, exists oninternet [KN 1994{]. 83



84 7. CONTOUR REPRESENTATION FOR QUANTUM MODELSOur starting point is the Duhamel formulae��V���T� = e��V� + Z �0 d� e��V� (�T�) e�(���)(V�+T�) : (7.1)(It can be proved by showing that both sides satisfy the di�erential equation dd� [�] =�[�][V� + T�].) Iterating, we obtaine��V���T� = e��V� + Xm > 1 Z0<�1<:::<�m<� d�1 : : : d�me��1V� (�T�) e�(�2��1)V� : : : (�T�) e�(���m)V� : (7.2)T� is a quantum interaction, i.e. T� = PA;A�� TA. Inserting the expansion of unity1l = Pn�2
� jn�ihn�j on the right of each operator (�T�), we obtain an expression forthe trace, namelyTr e��V���T� = Tr e��V� + Xm > 1(�1)m XA1;:::;Am Xn(1)� ;:::;n(m)� Z0<�1<:::<�m<� d�1 : : : d�me��1V�(n(1)� ) hn(1)� jTA1 jn(2)� i e�(�2��1)V�(n(2)� ) : : : hn(m)� jTAm jn(1)� i e�(���m)V�(n(1)� ) ; (7.3)where we used V�(n�) instead of hn�jV� jn�i.Remark that a similar expansion can be done using Trotter formula:e��V���T� = limN!1� e�V�=N e�T�=N ��N = limN!1� e�V�=N �1� T�N ���N : (7.4)Proceeding in the same way as with the Duhamel expansion, we obtain a discrete analogousof (7.3)Tr e��V���T� = Tr e��V� + limN!1 �NXm=1(�1)m XA1;:::;Am Xn(1)� ;:::;n(m)� X1 6 �1<:::<�m 6 �Ne� �1N V�(n(1)� ) hn(1)� j TA1N jn(2)� i e� �2��1N V�(n(2)� ) : : : hn(m)� j TAmN jn(1)� i e��N��mN V�(n(1)� ) : (7.5)The two expansions are totally equivalent for our purpose. Actually, our choice to usethe Duhamel formula is motivated mainly by esthetic considerations.2. Models with local interactionsWhen the potential V is an on-site interaction, i.e. when it is of the form (3.1), we canshow that the domain of the high temperature phase extends to very low temperatures,provided the quantum perturbation T is small enough.The idea is to combine the Duhamel expansion with a polymer representation of thepartition function; the result will be then immediate from Chapter 5.To a given choice of A1; : : : ;Am, corresponds a set fA1; : : : ;A`g of mutually disjointconnected subsets of �, such that [mj=1Aj = [j̀=1Aj. We call these connected subsets



3. DERIVATION OF THE CLASSICAL CONTOUR REPRESENTATION 85polymers and de�ne their weight,�(A) = e�f0(�;�)jAj Xm > 1(�1)m XA1;:::;Am[jAj=A XnA Z0<�1<:::<�m<� d�1 : : : d�mhnAj e��1VA TA1 e�(�2��1)VA : : : TAm e�(���m)VA jnAi (7.6)where f0(�;�) is the free energy of the classical model, i.e. when H = V . The partitionfunction takes the form Z� = e��f0(�;�)j�j XfA1;:::;A`gAi 6eAj Ỳj=1 �(Aj): (7.7)With e0 = minnxhnxjVfxg jnxi, x 2 Z�, we havejhnAj e��1VA TA1 e�(�2��1)VA : : : TAm e�(���m)VA jnAij 6 e��e0jAj kTA1k : : : kTAmk:(7.8)f0(�;�) 6 e0, and the integral over times �j brings a factor �m=m!. We �nd a boundj�(A)j 6 SjAj e�cjAj Xm > 1 1m!��jAjXA3x kTAk ecjAj �m: (7.9)Theorem 3.2 is a direct consequence of Proposition 5.3.3. Derivation of the classical contour representationThe excitations of a classical lattice model can be (generally) expressed as contours.The study of the low temperature behaviour, and more precisely the proof that the fea-tures of the ground states survive at low temperatures, is related to the rarety of thecontours. Our aim is analogous here, where we consider a quantum perturbation of a niceclassical model. We want to show that the 
uctuations due to the small quantum termare rare, and hence the expectation value of observables is close to the matrix elementin the (classical) ground state. The procedure follows [BKU 1996, DFF 1996], see also[BKU 1997]. Actually, there is an important technical di�erence between [BKU 1996] and[DFF 1996], namely that in the previous paper one introduces a discretization of the addi-tional dimension, so as to obtain a classical lattice model; in the second paper, the contourmodel is in a semi-continuous space, and it is necessary to reformulate the Pirogov-Sinaitheory in this case. However, the basic idea, namely to control the 
uctuations by showingthat contours are rare, is the same in both papers.We immediately describe the result of this section | the contour representation of thequantum model | in Proposition 7.1 below, and therefore we recall some notation.Let M 2 N and ~� > 0 be such that M ~� = � | the discretization of the additionalcontinuous dimension, as we shall see. We introduce the lattice L� = ��f1; 2; : : : ;Mg �Z�+1.We view L� as a cylinder by imposing periodic boundary conditions along the extradimension (i.e. we assume that for all x 2 �, (x; 1) and (x;M) are neighbours). We de�necontours as in Section 4, Chapter 6; a contour Y is a pair (SuppY; �Y ), where SuppY � L�is a (non-empty) connected set and �Y is a labelling of elementary faces F of @ SuppY ,�Y (F ) = g(1); : : : ; g(p), that is constant on the boundary of each connected componentof L� n SuppY . A set of contours fY1; : : : ; Ykg is admissible if the contours are mutually



86 7. CONTOUR REPRESENTATION FOR QUANTUM MODELSdisjoint and if the labelling is constant on the boundary of each connected component of�[ki=1 SuppYi�c. This set is said to be compatible with the boundary conditions g0 if theexternal connected components (those touching Z�+1 n L�) of �[ki=1 SuppYi�c have thelabel equal to g0. The horizontal faces centered at (x; �) will be referred to as P (x; �) (Pfor \plaquette").Let K be a local operator, with SuppK � �. We de�ne LK� , with periodic boundaryconditions along the time direction for all x 2 � not belonging to SuppK (i.e. we assumethat for all x 2 � n SuppK: (x; 1) and (x;M) are neighbours). In other words, think ofLK� as the cylinder L� that is cut along SuppK at t = 12 . The \boundary" S(K) � TK�in time direction is S(K) = [x2SuppK P (x; 12);notice that P (x; 0) � P (x;M) whenever x 62 SuppK. The admissibility and compatibilitywith the boundary conditions of a set of contours in T� is de�ned in the same way asabove.A K-contour YK now is a triple (S(K);SuppYK ; �YK ) where SuppYK � LK� is suchthat each connected component intersects S(K), possibly SuppYK = ?, and the labelling�YK is constant on boundary faces of each connected components of the complement[SuppYK ]c.We are now ready for the de�nition of the equivalent classical contour model.Proposition 7.1. Contour model for quantum system.Let H� = T� + V � a quantum interaction, with T� 2 Q and V � 2 C(R0; G;�0; a; b).i) There exists a function �: fY j SuppY � L�g �! C such that the partitionfunction of H��;g0 can be written asZg0� = XfY1;:::;Ykg kYi=1 �(Yi)Yg2G e�~�e�(g)jWgj ; (7.10)where the sum is over admissible sets of contours in L� compatible with the boundaryconditions g0; the setWg is the union of the connected components of �[ki=1 SuppYi�cwith labels g on its boundaries.ii) For any c 2 R, there exist ~�0 < 1 and "0 > 0 such that if ~� 2 [ ~�0; 2~�0] andkT�k 6 "0 the following bound is valid for any Y :j�(Y )j 6 e�( ~�e�0 +c)jY j : (7.11)iii) For any c 2 R, there exist ~�00 < 1 and "00 > 0 such that if ~� 2 [ ~�00; 2~�00] andkT�k+Ppi=1 k @@�iT�k 6 "00 we have��� @@�i �(Y )��� 6 (C0 ~� + 1) e�( ~�e�0 +c)jY j : (7.12)iv) If K 2 L(0), or if K 2 L(c) and [TA; NA] = 0 for all A, there exists a function �K:fYK j SuppYK � LK� g �! C such thatTrK e��H�g0� = XfYK ;Y1;:::;Ykg �K(YK) kYi=1 �(Yi)Yg2G e�~�e�(g)jWmj : (7.13)



3. DERIVATION OF THE CLASSICAL CONTOUR REPRESENTATION 87As before, the sum is over admissible sets of contours, compatible with the boundarycondition g0; � is the same function as in i); Wm is the union of the connectedcomponents of �[ki=1 SuppYi[SuppYK�c with labels m on their boundaries.v) For any 
K 2 R there exist ~�0;K < 1 and "0;K > 0 such that if ~� 2 [ ~�0;K ; 2~�0;K ]and kTk 6 "0;K we havej�K(YK)j 6 CK e�( ~�e�0 +
K)jYK j (7.14)with CK <1.The rest of the section is the proof of this proposition. We begin by expandingTrK e��H�g0� to obtain explicit expressions for �K and �; hence part iv) will be proven,and also part i) that can be viewed as a special case of iv) with K = 1l [i.e., formally,SuppK = ? and there is no summation over YK in (7.13)]. Similarly v) implies ii) andtherefore the following proofs of iv), v), and iii) are su�cient. For sake of clarity we dropout the dependance in � in the proofs of points iv) and v).Proof of Proposition 7.1 iv). Our Hamiltonian has periodicity `0 <1. Withoutloss of generality, however, one can consider only translation invariant Hamiltonians, ap-plying the standard trick. Namely, if 
 is the single site phase space, we let 
0 = 
f1;:::;`0g� .Then we consider the torus �0 � Z�, `�0 j�0j = j�j, each point of which is representing ablock of sites in � of size `�0 , and identify
0�0 ' 
�:Constructing H0 as the Hilbert space spanned by the elements of 
0�0 , it is clear that H0is isomorphic to H. The new translation invariant interactions �0 and T 0 are de�ned byresumming, for each A � �0, the corresponding contributions with supports in the unionof corresponding blocks. Notice the change in range of interactions. Namely, it decreasedto dR=`0e (the lowest integer bigger or equal to R=`0).From now on, keeping the original notationH, S, : : : , we suppose that the Hamiltonianis translation invariant.We expand TrK e��Hg0� with Duhamel formula, and we �nd [compare with (7.3)]TrK e��Hg0� = Xm > 0 XA1;:::;Am Xn(0)� ;:::;n(m)� Z0<�1<:::<�m<� d�1 : : : d�mhn(0)� jK jn(1)� ie��1V g0� (n(1)� ) hn(1)� j (�TA1) jn(2)� i e�(�2��1)V g0� (n(2)� ) : : : hn(m)� j (�TAm) jn(0)� i e�(���m)V g0� (n(0)� ) :(7.15)Let us introduce the space-time con�guration n� : [0; �] per ! 
� and the quantum con�g-uration !� = (n�;A1; : : : ;Am; �1; : : : ; �m), where the mapping n� is constant except for(m + 1) discontinuities at times 0; �1; : : : ; �m. The previous equation can be summarizedwithTrK e��Hg0� = ZWg0;� d!�hn�(�0)jK jn�(+0)i e� R �0 d�V g0� (n�(�))YA2!�hn�(�A � 0)j (�TA) jn�(�A + 0)i (7.16)where RWg0;� d!� is a shorthand for a sum over m > 0, over m transitions (in �), overm con�gurations, and integration over m ordered times; we denoted with �Ai the time �i



88 7. CONTOUR REPRESENTATION FOR QUANTUM MODELSat which occurs the transition Ai. Wg0;� is the space of all quantum con�gurations onthe in�nite volume Z� � [0; �] per with a �nite number of transitions (all inside �), andsuch that nx(�) = (g0)x for all x =2 � and all � . In other words, Wg0;� represents all thequantum con�gurations with boundary conditions g0.A con�guration n 2 
 is said to be in the sate g 2 G at x whenever nU(x) = gU(x). Ifthere is no such g 2 G, the con�guration is said to be classically excited at x. Let E(n)be the set of excitations of n, i.e.E(n) = fx 2 Z� : nU(x) 6= gU(x) 8g 2 Gg: (7.17)Similarly, we de�ne the excitations of a quantum con�guration ! to beE(!) = [A2!( �A� �A)[ [�2[0;�]per(E(n(�))� �): (7.18)We need a notion of connectedness on T = Z� � [0; �] per and we choose the mostintuitive one; a subset B � T is connected if for any (x; �); (x0; � 0) 2 B, there exists asequence �(x0; �0); (x1; �1); : : : ; (xk; �k)� with (x0; �0) = (x; �), (xk; �k) = (x0; � 0), (xj; �j) 2B, 0 6 j 6 k, and for all j: either [jxj � xj�1j = 1 and �j = �j�1] or [xj = xj�1 andone of the segments xj � [�j�1; �j ], xj � [�j ; �j�1] is included in B].Then for all ! 2 Wg0;�, E(!) decomposes in a unique way into a �nite number ofconnected components. We de�ne a quantum contour 
 to be a pair (B;!B) with B � Tconnected and !B is the restriction of a quantum con�guration to B (we suppose herethat ! is such that no transition intersects both B and its complement; we do not de�ne! in this case).A set � of quantum contours is admissible and compatible with the boundary conditiong0 if there exists a ! 2 Wg0;� that has � as set of quantum contours. Let Gg0;� be thespace of all such �. Since there is a bijection between Wg0;� and Gg0;�, we can rewrite(7.16), TrK e��Hg0;� = ZGg0;� d��K(�); (7.19)where�K(�) = hn�(�0)jK jn�(+0)i e� R �0 d�V g0� (n�(�)) YA2!�hn�(�A � 0)j (�TA) jn�(�A + 0)i(7.20)(the product over transitions is ordered according to the times at which they occur). Wedenote by !� (resp. n�) the quantum contour (resp. the space-time con�guration) thatcorresponds to �. We also introduce the shorthand R d(x; �) for R d�Px.Lemma 7.2. The contribution of an admissible set of contours � factorizes into con-tributions of its elements; more precisely,�K(�) = Yg2G e�e�(g)j ~Wg j �K(
K) Y
2�nf
Kg �(
) (7.21)where ~Wg = f(x; �) 2 Z� � [0; �] per : n�U(x)(�) = gU(x)g; (7.22)since n�U(x) is constant except for a �nite number of discontinuities, ~Wg is a union of ver-tical segments; we de�ne its length j ~Wgj as the sum of the lengths of the vertical segments.



3. DERIVATION OF THE CLASSICAL CONTOUR REPRESENTATION 89The weights of the contour 
 = (B;!B) is�(
) = YA2!Bhn
(�A � 0)j (�TA) jn
(�A + 0)i expn�ZB d(x; �)�x(n
U(x)(�))o (7.23)and, for a K-contour 
K = (B;!B),�K(
K) = hn
K (�0)jK jn
K (+0)i YA2!Bhn
K (�A � 0)j (�TA) jn
K (�A + 0)iexpn�ZB d(x; �)�x(n
KU(x)(�))o: (7.24)The proof of this lemma is not hard in the case of spin or boson systems, using thefact that two operators with disjoint supports commute. In the case of fermion systemsthere is an additional sign due to the anticommutation relations between creation andannihilation operators, and the factorization of this sign is not obvious. Ideas how tosolve this problem were proposed in [MM 1996] in the case of the Falicov-Kimball model.However, the �rst full proof in the general case is in Section 4.2 of [DFF 1996]. It is nicelywritten, and rather than reproducing it verbatim here, we present a geometric argumentthat works in most of the situations, although it is less general.Argument for the factorization of the fermionic sign :Let J denote a \jump", i.e. a pair (<x; y>; �), where x; y 2 Z�, and � represents aninternal degree of freedom of our fermion, for instance a spin. We set TJ = cyy�cx�. Wegive ourselves a set J� of sets of jumps, and consider an interaction T that is given byT� = XfJ1;:::;Jmg2J� tJ1 : : : tJmTJ1 : : : TJm ; tJi 2 C : (7.25)Expanding the partition function of a model with this quantum interaction, we arrive ata space-time picture with contours. Except for the sign, we can factorize the contribution�(�) of a set of contours �, namely,Zg0(�) = ZGg0;� d�Yg2G e�e�(g)jWgj "(�)Y
2� ~�(
) (7.26)with ~�(
) = �YJ2
(�tJ)� expn�ZB d(x; �)�x(n
U(x)(�))o: (7.27)A natural notion here is that of trajectories. The trajectory of a particle of spin �is a sequence � = (�;x0; x1; : : : ; xm; �1; : : : ; �m); x0; : : : ; xm are the successive positions inspace; �j , 1 6 j 6 m, is the time at which a jump from xj�1 to xj occurs. The �nalposition is the site xm, which is not necessarily equal to x1. To any quantum con�gurationcorresponds an (admissible) set of trajectories � = (�1; : : : ; �k). Let Tg0;� denote the spaceof admissible sets of trajectories with jumps in � (as before, g0 is the boundary condition).The partition function (7.26) can be written in terms of trajectoriesZg0(�) = ZTg0;� d�expn�ZT� d(x; �)�x(n�U(x)(�))o"(�)Y�2�YJ2�(�tJ): (7.28)If � and � represents the same quantum con�guration, then "(�) = "(�). Moreover, if weview n��(0) as a (�nite) sequence of particles, ordered according to some prede�nite orderon sites and spins, then � describes a permutation of this sequence. Namely, the image



90 7. CONTOUR REPRESENTATION FOR QUANTUM MODELSof an element (x; �) is the the element (x0; �) such that there is � 2 � with � = (�;x1 =x; x2; : : : ; xm = x0; �1; : : : ; �m). The sign of this permutation is equal to "(�).2The idea behind this argument is to replace a set � of trajectories by an equivalentset �0, that has identical trajectories outside of contours, and that de�nes the same per-mutation. This is illustrated in Fig. 7.1. The new set of trajectories allows to de�netranspositions, that depends on the contours only, and such that the total permutation isa (time-ordered) product of these transpositions. The sign attributed to each contour isthus +1 for a contour with an even number of transpositions, and �1 if this number isodd.

�0
�

(1) (2) (3)
(3) (2) (1)
1 
2

Figure 7.1. Symbolic picture with two contours 
1 and 
2, and three trajectories. Orig-inal trajectories (full lines) are equivalent with new trajectories (dotted lines inside con-tours) with transpositions (dark horizontal lines). Resulting signs are "(
1) = +1 and"(
2) = �1.To de�ne the new trajectories, we �rst consider the vertical lines obtained by the pro-longation of all segments of trajectories outside of the contours. Intersections betweentrajectories and boundaries of contours form the \entrances" (n1; : : : ; nm) and \exits"(x1; : : : ; xn). Remark that intersections between the new vertical lines and the boundariesof contours yield the same entrances and exits. Entrances and exits are ordered in increas-ing times. In the new trajectories all the particles are supposed to go straightway, untilthe �rst exit x1 occurs. We check which particle is leaving the contour at x1. If this par-ticle is supposed to be on another trajectory, then we de�ne a bridge (i.e. a transposition)between the other trajectory, and the one that is leaving.Then the particles are again supposed to go straightway, until the time when x2 occurs.Again, we check whether a new bridge has to be de�ned. We repeat this procedure untilthe last exit of the contour has been met (notice that no transposition is ever de�ned withthe last exit). An important remark is that the decision to de�ne a bridge depends onlyon the given contour, since only a particle that previously entered, can leave.As a result, we have that the total permutation stemming from � is given by a time-ordered product on the transpositions. This permutation clearly does not factorize withrespect to the contours, but its sign does. This concludes the argument for the factorizationof the sign.So far we have obtained a contour model which is a suitable starting point for applyingPirogov-Sinai theory, except that the contours have support in a continuous space. One2In fact, this is certainly true, but not mathematically obvious; this would require a proof, if thisdiscussion pretended to be more than an argument.



3. DERIVATION OF THE CLASSICAL CONTOUR REPRESENTATION 91way is to extend the Pirogov-Sinai theory to this situation; this is done in [DFF 1996].However we proceed here as in [BKU 1996]; we discretize the continuous direction byintroducing ~�;M with � = ~�M , and we obtain the lattice L� .For a given quantum con�guration ! 2 Wg0;�, we introduce quantum and classicalexcitations: EQ(!) = n(x; t) 2 L : � [A2!( �A� �A)� \C(x; t) 6= ?o (7.29)EC(!) = n(x; t) 2 L n EQ : nU(x)( ~�t) 6= gU(x)8g 2 Go: (7.30)Decomposing EQ(!) [EC(!) into connected components, we obtain the supports of thecontours; the component touching SuppK � 0 yields YK . The labelling is determined bythe con�gurations on the complements of the supports of the contours.The weight of these contours �(Y ) is a complicated but well-de�ned expression, thatis an integral over all sets of quantum contours having supports on [(x;t)2Supp Y C(x; t),and compatible with the labelling. The weight �K(YK) contains moreover a contributionof the local operator K.This concludes the proof of the point iv) of the proposition.Proof of Proposition 7.1 v). Let us start by the part of the contours with quan-tum transitions. We consider a connected set A � � and a time t 2 f1; : : : ;Mg such that(A� t) � SuppY , where Y is a contour. We have to show thatecjAj Xm > 1 XA1;:::;Am[j �Aj=A Xn(1)A1 ;:::;n(m)Am Z0<�1<:::�m<~� d�1 : : : d�m e��1Px2A�x(n(0)U(x))e�(�2��1)Px2A �x(n(1)U(x)) : : : e�( ~���m)Px2A�x(n(m)U(x)) ��hn(0)jTA1 jn(1)i : : : hn(m�1)jTAm jn(m)i��is a small quantity, uniformly in the initial con�guration n(0). Remark that the con�gu-rations are such that n(1)Ac1 = n(0)Ac1 , : : : , n(m)Acm = n(m�1)Acm .A geometrical representation of this sum is useful, see Fig. 7.2. Let x 2 A. To eachchoice of A1, : : : , Am and �1, : : : , �m corresponds a \bush" b, that is, a collection of setsA01, : : : A0m and vertical segments `1, : : : , `m � TA, such that� (A01; : : : ; A0m) is a permutation of (A1; : : : ; Am);� �A01 3 x, and `1 has one end at x� 0 and the other on �A01 � �A01 ; x is the root of thebush;� if there is a vertical segment `i between �A0i and �A0j, then �A0i e �A0j ;� the graph of m vertices with an edge between i and j whenever a vertical segmentconnects �A0i and �A0j , is connected (or equivalently, this graph is a tree);� if �A0i and �A0j are connected by a vertical segment, say `j, then no other transitionintersects the set ( �A0i \ �A0j)� `j.We obtain a bound by considering the (continuous) sum over all bushes. If � 0j is thelength of the segment `j , and denoting by �n(j)A0j the con�guration immediately before thetransition j if `j lies below A0j, otherwise �n(j)A0j is the con�guration immediately after, we
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A0

~�
x`1�A01`j�A0jFigure 7.2. A \bush" with 6 transitions and 6 vertical segments.have the inequalitye��1Px2A�x(n(0)U(x)) : : : e�( ~���m)Px2A�x(n(m)U(x)) 66 e�~�jAje�0 e~�(a+b)jAj e��1b(jn(0)A j+1) : : : e�( ~���m)b(jn(m)A j+1)6 e�~�jAje�0 e~�(a+b)jAj e� 12 � 01b(j�n(1)A01 j+1) : : : e� 12 � 0mb(j�n(m)A0m j+1) (7.31)The �rst inequality holds because � 2 C(R0; G;�0; a; b).Denoting Bm;x the space of all bushes with root x and at most m transitions, andRBm;x db a shorthand for the sum over sets A01; : : : A0m and time intervals � 01; : : : � 0m, withcorresponding restrictions and combinatorics, we have to estimatelimm!1 maxn(0)2
ZBm;x db�z(b)with �z(b) = XA1;:::;AmAj=A0j Xn(1)A01 ;:::;n(m)A0m mYj=1��hn̂(j)jTAj jn(j)i�� ec(2R0)� jAj j e� 12 � 0jb(1+j�n(j)Aj j) ;where n̂(j) is the con�guration just before the j-th transition (possibly n̂(j) = �n(j)).We proceed by induction on m. First,maxn(0) ZB1;x db XA1:A1=A01Xn(1)A01 ��hn(0)jTA1 jn(1)i�� ec(2R0)� jA01j e� 12 � 01b(1+jn(0)A01 j)6 2b XA01: �A013xmaxn(0) XA1:A1=A01Xn(1)A01 ��hn(0)jTA1 jn(1)i��1 + jn(0)A01 j ec(2R0)� jA01j6 2b XA01: �A013xhkTk ec(2R0)� ijA01j6 2b (2R0)� ikTk ec(2R0)�1� ikTk ec(2R0)� : (7.32)Let " = 4b (2R0)�ikTk ec(2R0)� ; the bound above is smaller than " if kTk is small enough.



3. DERIVATION OF THE CLASSICAL CONTOUR REPRESENTATION 93We consider now the integration over bushes with at most m transitions.maxn(0) ZBm;x db�z(b) 6 maxn(0) XA01: �A013x XA1:A1=A01Xn(1)A01 Z 10 d� 01 e� 12 � 01b(1+jn(0)A01 j)��hn(0)jTA1 jn(1)i�� ec(2R0)� jA01j Xk > 0 1k! kYj=1h2 Xxj2 �A01maxn(0) ZBm�1;xj db�z(b)i6 2b maxn(0) XA01: �A013x XA1:A1=A01Xn(1)A01 ��hn(0)jTA1 jn(1)i��1 + jn(0)A01 j ec(2R0)� jA01j e2(2R0)� jA01j"(7.33)and we �nd a bound 2b (2R0)� ikTk e(2R0)�(c+2")1� ikTk e(2R0)�(c+2") 6 "if kTk is small enough.We have to discuss the e�ect of the local operator K. If K 2 L(0), it yields a factorinvolving kKk < 1, and we are done. But if K 2 L(c), more caution is needed. A termexp(cK jnSuppK j) appears and acts on the cells just below SuppK � 0. Let A connectedsuch that A �M � SuppYK , A \ SuppK 6= ?. For any choice of quantum transitions(Ai; �i), the space-time con�guration n in the cells centered on the sites of A �M hasconstant number of particles. Thereforeexp�cK jnA( ~�)j� = exp�cK~� Z ~�0 d� jnA(�)j�: (7.34)The only e�ect is to change b into b � cK=~� in (7.31). It is bigger than 0 if ~� is largeenough (depending on cK).Having checked that the contribution of the quantum excitations has exponential de-cay, there remains to verify the same for the classical excitations. It is a much easiertask.Let EC � SuppY . The space-time con�guration is constant on EC , and moreover ithas to be classically excited. Since � 2 C(R0; G;�0; a; b), properties (2.12) and (2.13) arevalid, and we obtain a bound, for each site of EC ,e�~�e�0 h Xnx:jnxj 6 2a=b e�~��0 + Xnx:jnxj>2a=b e�~�(bjnxj�a) iand this is as small as we may need by choosing ~� large enough. If the local operatorK 2 L(c) occurs, then we have to choose ~� large enough, depending on cK , so as theexpression above remains small.Proof of Proposition 7.1 iii). This proof is not hard, but tedious, and rather thanbothering the reader we simply refer to [BKU 1997] | the bound is true because of theassumptions on the derivatives of the classical energy and on the norm of the quantuminteractions k @@�iT�k.



94 7. CONTOUR REPRESENTATION FOR QUANTUM MODELSTheorems 3.3 and 3.4 are now consequences of the Pirogov-Sinai theory (Chapter 6)applied to the contour model speci�ed in Proposition 7.1. As for the expectation valueof local observables, there is a di�erence between the equations (6.17) and (7.13). Itcould be possible to modify Proposition 7.1 iv); it is a tedious but straightforward task.However, since everything is already written down, we content ourselves by observing thatsmall adaptations of the Pirogov-Sinai theory allow to consider the contour model as it isspeci�ed in Proposition 7.1.



CHAPTER 8E�ective potential due to quantum 
uctuationsA partition function is a sum over con�gurations, with some weight. All the con�g-urations have to be considered, because all of them have a weight that di�ers from 0 (ingeneral). However, it is useful to imagine that only typical con�gurations are important;these typical con�gurations all look the same (i.e. macroscopic observables take the samevalue on all of them), and their total weight is much bigger then the total weight of thenon-typical con�gurations. In the previous chapter, the typical (space-time) con�gurationsconsisted in a classical ground state, that is constant along the time direction, with rarecontours here and there. We showed that the e�ect of these contours was unimportant,but it has to be understood that they were present, and they brought a small correctionto the partition function. Our aim now is to compute the contribution of the contours, atleast the smallest and the most frequent ones, and to show that it can be rewritten as anew classical interaction.The motivation to go beyond the study of the previous chapter has multiple origins.� This allows to compute some thermodynamic quantities where quantum e�ects areimportant. For instance, take an Ising model in a transverse magnetic �eld: theHilbert spaceH� is the one spanned by the classical con�gurations �� 2 f�1;+1g�,and the Hamiltonian isH� = X<x;y>��S(3)x S(3)y � hXx2�S(1)x : (8.1)The susceptibility in the direction 1,�(j1) = @@h hS(j)x i�; (8.2)may be considered as a measure of the quantum 
uctuations.� For models that are stable with respect to the quantum 
uctuations, we know thatthe low temperature phase diagram is a small deformation of the zero temperaturephase diagram of the corresponding classical model. We may be interested in howthe quantum perturbation moves the coexistence lines.� The quantum 
uctuations may totally modify the features of the low temperaturephases; there are models where the classical interaction has degenerate groundstates, and for which the quantum 
uctuations remove the degeneracy.Actually, we shall concentrate on the last point. Another consequence of this e�ectivepotential is the stabilization of interfaces, see [DMN 1998].Systematic approaches to models with degeneracies were proposed �rst in [DFFR 1996],then in [KU 1998]. Of course, we shall follow here the last method, but let us begin witha quick look on the �rst one.Starting from a Hamiltonian H(t) = H(0) + tV , H(0) being a diagonal operator within�nitely many ground states, and V the quantum perturbation, the idea is to de�ne an95



96 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSantisymmetric matrix S = tS(1) + t2S(2) and to considerH(2)(t) = eS H(t) e�S :Denoting adH(0)S = [H(0); S] = �adSH(0), H(2)(t) is expanded using Lie-Schwinger seriesH(2)(t) = 1Xn=0 tnn!adnSH(t):At order t1 in this expansion we �nd tV and t adS(1)H(0), and we choose S(1) such thatthese terms cancel. At order t2 we have t2[adS(2)H(0) + adS(1)V + 12ad2S(1)H(0)]. S(2) ischosen so as the o�-diagonal terms disappear at this order, and as a result H(2)(t) isdiagonal, up to terms of order t3 or higher. If the diagonal part of H(2)(t) has a �nitenumber of ground states, and if the excitations cost strictly positive energy, then it can beshown that these ground states are stable. It is possible to include higher orders in thisperturbation scheme. See [DFFR 1996] for additional information.1. The asymmetric Hubbard modelBefore beginning the full developments in the general situation, we present a heuristicalderivation of the e�ective potential in the case of the asymmetric Hubbard model. Recallthat the local con�guration space is f0; "; #; 2g; the classical interaction is the on-site term(R0 = 0). �x(nx) = U2 (nx" + nx# � 1)2; (8.3)and the quantum interaction is (TA); A = (< x; y >; �), where < x; y > is a pair ofneighbouring sites, and � 2 f"; #g. If A = (<x; y>; �), thenTA = t�cyx�cy�: (8.4)1.1. Duhamel expansion of the partition function. With the use of Duhamelformula (see Chapter 7) we can getZ� = Tr e��H = Tr e��V��T= Tr 1Xm=0 Z0<�1<:::<�m<� d�1 : : : d�m e��1V (�T ) e�(�2��1)V (�T ) : : : (�T ) e�(���m)V :(8.5)Expanding the unit operator 1l =Pn jnihnj at the right of each operator V , we obtainZ� = Xm > 0 Xn1;:::;nm XA1;:::;AmAi=(<xi;yi>;�i)Z0<�1<:::<�m<�e��1�(n1) hn1jTA1 jn2i e�(�2��1)�(n2) : : : hnmjTAm jn1i e�(���m)�(n1) : (8.6)We have the following geometrical interpretation, see Fig. 8.1.We consider the space-time �� [0; �]. We sum over an integer m, over A1, : : : , Am,on m successive con�gurations, and we integrate over m successive times �1, : : : , �m.The partition function is now a (continuous) sum over all the quantum con�gurations; it isspeci�ed by a set of transitions (A1; �1), : : : , (Am; �m), and by a space-time con�gurationsn: [0; �]! f0; "; #; 2g� , which is constant except at times �1, : : : , �m. The second line of(8.6) gives the weight of a space-time con�guration.
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�

�
" # " # " # 2 " # # " 22 0A1 = (<x; y>;")A2 = (<y;x>;")

Figure 8.1It is useful to consider this partition function as the one of a classical model (in onemore dimension), and to use classical intuition. Namely, at low temperature and withnon zero hopping, we expect that the thermodynamical states will be those that allowfor a lot of quantum 
uctuations. This is similar to the cases studied by Bricmont andSlawny [BS 1989], where low temperature states of classical systems can be chosen bythermal 
uctuations. The nature of quantum 
uctuations is however very di�erent, andwe took advantage of the study by Messager and Miracle-Sol�e of the Falicov-Kimball model[MM 1996].1.2. Identi�cation of small and big \quantum contours". See Fig. 8.2. We saythat a space-time site (x; �) 2 � � [0; �] is excited if the space-time con�guration takesvalue 0 or 2 on (x; �), i.e. [n(�)]x 2 f0; 2g.
�

�
" 0 2 # 2 " # # " # " #

0 2# " 0 "22 2 2 0
Figure 8.2. Four space-time contours. The �rst three are big while the last one is asmall quantum contour.Quantum contours are formed by connected sets of excitations and transitions. Theyare small if there are only two transitions of " spins, otherwise they are big. Let 
 denotea big quantum contour, and � denote a small one. We have the following decompositionof the partition functionZ� = Z dn"(�(n)) Y
2�(n) z(
)Z��n d�Y�2� z(�): (8.7)The �rst integral is over space-time con�gurations n such that all their contours are big;we denote the set of contours by �(n). The set of small contours � is such that thereexists a con�guration n0, which coincides with n outside of the supports of small contours.



98 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSThe sign "(�(n)) = �1 is associated with the permutation of the electrons due to �(n)(it is present because we have fermions). The weights are given byz(
) = ( YA=(<x;y>;�)2
 t�) e�U2 `0(
) : (8.8)Here `0(
) is the vertical length of 
. The same equation holds for z(�); but since � has asimpler structure, so does its weight, which can be written asz(�) = t2" e�U2 `0(�) : (8.9)Remark that the constraints over big quantum contours are non-local; indeed, wecan have a situation as displayed in Fig. 8.3. The two contours have disjoint supports,and because of the periodicity in the time direction, it is impossible to have one contourwithout the other.
�

�
# " # "0 22 0# "

Figure 8.3On the contrary, the constraints on the small quantum contours, for a given n, arelocal (namely, only non-intersection), and hence we can apply cluster expansion techniques.However, we proceed here with this expansion more naively and non rigorously, since it issimpler.1.3. Expansion of the small quantum contours. Since z(�) is a small quantity,the small contours are rare and the condition of non-intersection is irrelevant; thereforewe can approximate1loghZ��n d�Y�2� z(�)i ' Z��n d�z(�)= X<x;y>Z �0 d� Z��n;Supp �3(x;�)A=(<x;y>;")2� d� 2z(�)`0(�) : (8.10)The small quantum contours cannot intersect the big ones. But releasing this con-straint only means a small change on the contributions of the big quantum contours, andsince the latter will be shown as being unimportant, we can do this approximation.2 Hence1This step can be achieved rigorously using cluster expansions. Extra terms appear and they are notlocal; but their contribution decays exponentially fast with their size.2This may also be set rigorous by considering \decorations" of the big quantum contours.



1. THE ASYMMETRIC HUBBARD MODEL 99we write,X<x;y>Z �0 d� Z��n;Supp �3(x;�)A=(<x;y>;")2� d� 2z(�)`0(�) ' X<x;y>Z �0 d� Z ��n<x;y>(�)Supp �3(x;�)A=(<x;y>;")2� d� 2z(�)`0(�) : (8.11)We de�ne now the e�ective potential 	fx;yg(nfx;yg)	fx;yg(nfx;yg) + �Z ��nfx;ygSupp �3(x;�)A=(<x;y>;")2� d� 2z(�)`0(�) : (8.12)Let us compute it explicitely (see Fig. 8.4).� If nfx;yg 2 f("; #); (#; ")g: we have	fx;yg(nfx;yg) = �t2" Z 10 d�1 Z 1�1 d�2 e��2U�2= �t2" Z 10 d�2 Z 10 d�1 e��2U�2 I��2 > �1�= �t2" Z 10 d�2 e��2U= � t2"U :� If nfx;yg =2 f("; #); (#; ")g, it is zero.We see that the e�ective potential favours pairs of opposite spins, hence we expect tohave chessboard-like structure.
x y0�1 �2Figure 8.41.4. De�nition of a classical contour model. Let us come back to the partitionfunction. With the expansion of small quantum contours, and with our approximations,Equation (8.7) becomesZ� ' Z dn"(�(n)) Y
2�(n) z(
) exph� X<x;y>Z �0 d�	fx;yg(nfx;yg(�))i; (8.13)with the weights of the quantum contours given by (8.8). We rede�ne now the big quan-tum contours, by considering the pairs ("; ") and (#; #) as excited, see Fig. 8.5. Now, anadmissible set of contours � speci�es the whole quantum con�guration n.33The contour model that we de�ne here is di�erent from the setting introduced in Chapter 6. However,we only need in this heuristical discussion a model where it is plausible to apply the Peierls argument.
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�

�
" # " # " # # " # " # "# "

Figure 8.5. Three contours; their supports are formed excited sites with 0 or 2 particles,or by excited pairs with same spins.Then we obtain Z� = e��j�jt2"=U Z d�Y
2� z(
) (8.14)with the new weight given byz(
) = ( YA=(<x;y>;�)2
 t�)"(
) e�U2 `0(
)� t2"U `(
) : (8.15)The length `(
) is the vertical length of the part of Supp
 that is formed by pairs ("; ")or (#; #). "(
) = �1 is a sign due to the fermionic character of the particles. Actually, itis not easy to show that the initial "(�) factorizes with respect to the contours; it is donein Section 4.2 of [DFF 1996].1.5. Peierls argument. The weight of the contours decays exponentially quicklywith respect to their lengths, so we are in the situation where the Peierls argument applies[Pei 1936, Dob 1965, Gri 1964]. Heuristically, contours are rare, and therefore the \typicalspace-time con�guration" is a constant chessboard. Therefore the expectation value of anylocal operator is, up to small corrections, the matrix element of this operator with respectto the chessboard state. 2. General systemThis section is a rewriting of the previous one; however, we consider now a moregeneral class of models (satisfying the assumptions of Section 4, Chapter 3), and theapproximations above are turned into a rigorous treatment.2.1. Contour representation. As discussed in Chapter 7, we can suppose that ourHamiltonian is translation invariant.We expand e��H per� with the Duhamel formula, see Chapter 7. As before, we gete��H per� = Xm > 0 XA1;:::;Am�Ai�� Z0<�1<:::<�m<� d�1 : : : d�me��1V per� TA1 e�(�2��1)V per TA2 : : : TAm e�(���m)V per : (8.16)



2. GENERAL SYSTEM 101Inserting the expansion of unity 1lH� = Pn� jn�ihn�j to the right of operators TAj , weobtainZ per� = Xm > 0 Xn1�;:::;nm� XA1;:::;Am�Ai�� Z0<�1<:::<�m<� d�1 : : : d�me��1V per� (n1�) hn1�jTA1 jn2�i e�(�2��1)V per� (n2�) : : : hnm� jTAm jn1�i e�(���m)V per� (n1�) : (8.17)Recall that we interpret this object as a classical partition function on the (� + 1)-dimensional space � � [0; �] per. Namely, calling the additional dimension \time direc-tion", the partition function Z per� is a (continuous) sum over all space-time con�gurationsn� = n�(�), � 2 [0; �], and all possible transitions at times corresponding to disconti-nuities of n�(�). Notice that n�(�) is periodic in the time direction. Thus, actually, weobtain a classical partition function on the (� + 1)-dimensional torus T� = � � [0; �]perwith a circle [0; �]per in time direction (for simplicity we omit in T� a reference to �). In-troducing the quantum con�guration !T� consisting of the space-time con�guration n�(�)and the transitions (Ai; �i) at corresponding times, we can rewrite (8.17) in a compactform Z per� = Z d!T�� per(!T�) (8.18)with � per(!T�) standing for the second line of (8.17).Now, we are going to specify excitations within a space-time con�guration n andidentify classes of small excitations | the loops4 | and large ones | the quantum contours.A con�guration n 2 
 is said to be in the state g 2 G at site x whenever nU(x) = gU(x)(notice that, in general, g is not unique). If there is no such g 2 G, the con�guration n issaid to be classically excited at x. We use E(n) to denote the set of all classically excitedsites of n 2 
Z�. For any � � Z�, let us consider the set W per� of quantum con�gurationson the torus T�. Whenever ! 2 Wd�, its boundary B(0)(!) � T� is de�ned as the unionB(0)(!) = ([�2[0;�](E(n(�)) � �)) [ ([mi=1( �Ai � �i)): (8.19)The sets �Ai� �i � T� represent the e�ect of the operator T and for this reason are calledquantum transitions. It is worth to notice that the set B(0)(!) is closed.Next step is to identify the smallest quantum excitations | those consisting of asequence of transitions from the list S. First, let us use B(0)(!) to denote the set ofconnected components of B(0)(!) (so that B(0)(!) = [B2B(0)(!)B). To any B 2 B(0)(!)that is not wrapped around the cylinder (i.e. for which there exists a time �B 2 [0; �] perwith B \ (Z�� �B) = ?) we assign its sequence of transitions, S(B;!), ordered accordingto their times (starting from �B to � and proceeding from 0 to �B) as well as the smallestbox ~B containing B. Here, a box is any subset of TZ� of the form A�[�1; �2] with connectedA � Z� and [�1; �2] � [0; �] per (if �1 > �2, we interpret the segment [�1; �2] as that intervalin [0; �]per (with endpoints �1 and �2) that contains the point 0 � �).We would like to declare the excitations with S(B;!) 2 S to be small. However, weneed to be sure that there are no other excitations in their close neighbourhood. If thiswere the case, we would \glue" the neighbouring excitations together. This motivates thefollowing iterative procedure.4Even though the present framework is more general, the name comes from thinking about simplestexcitations in Hubbard type models. Namely, a jump of an electron to a neighbouring site and returningafterwards to its original position.



102 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSGiven !, let us �rst consider the set B(0)0 (!) of those components B 2 B(0)(!) thatare not wrapped around the cylinder and for which S(B;!) 2 �S, where �S is the set of allsubsequences of sequences from S. Next, we de�ne the �rst extension of the boundary,B(1)(!) = ([B2B(0)(!)nB(0)0 (!)B) [ ([B2B(0)0 (!) ~B):Using B(1)(!) to denote the set of connected components ofB(1)(!) and B(1)0 (!) � B(1)(!)the set of those components B in B(1)(!) that are not wrapped around the cylinder andfor which5 S(B;!) 2 �S, we de�neB(2)(!) = ([B2B(1)(!)nB(1)0 (!)B) [ ([B2B(1)0 (!) ~B):Iterating this procedure, it is clear that after a �nite number of steps we obtain the�nal extension of the boundary,B(!) = ([B2B(k)(!)nB(k)0 (!)B) [ ([B2B(k)0 (!)B):Here, every B 2 B(k)0 (!) is a box of the form A � [�1; �2] (that is not wrapped aroundthe cylinder) and S(B;!) 2 �S. Let us denote B(!) � B(k)0 (!) and consider the setB0(!) � B(!) of all those sets B 2 B(k)0 (!) for which actually S(B;!) 2 S and, moreover,nA(�1�0) = nA(�2+0). Finally, let Bl(!) = B(!)nB0(!) | \l" for \large": it representsthe set of all excitations of ! that are not loops. Taking, for any closed B � T�, therestriction nB of a space-time con�guration n to be de�ned by (nB)x(�) = nx(�) for anyx�� 2 B, we introduce the useful notion of the restriction !B of a quantum con�guration! to B as to consist of nB and those quantum transitions from ! that are contained inB, A� � � B (we suppose here that ! and B are such that no transition intersects bothB and its complement; we do not de�ne !B in this case).Now the loops and and the quantum contours can be de�ned. First, the loops of aquantum con�guration ! are the triplets � � (B;!B; g�A); B � A� [�1; �2] 2 B0(!) is thesupport of the loop � and g�A = nA(�1 � 0) = nA(�2 + 0), a restriction of a con�gurationg 2 G. (While the con�guration g is not unique, its restriction to A is determined by theloop � in a unique way.) We say that � is immersed in g. Given a quantum con�guration!, we obtain a new con�guration �! by erasing all loops (B;!B ; g�A), i.e. for each � weremove all the transitions in its support B and change the space-time con�guration on Binto g 2 G into which � is immersed. Let us remark that B(�!) = Bl(!). Notice that,since we started our construction from (8.19), we have automatically diamA > 2R0 fora support A� [�1; �2] of any loop �.Quantum contours of a con�guration ! will be constructed by extending pairs (B;!B)with B 2 Bl(!) by including also the regions of nondominating states from G. Namely,summing over loops we will see that \loop free energy" favours the regions with dominatingcon�gurations from D � G. However, to recognize the in
uence of loops, we have to lookon regions of size comparable to the size of loops. This motivates the following de�nitionswith U 0(x) = fy 2 Z�; jx � yj < Rg being an extension of original neighbourhood U(x).Thus, we enlarge the set E(n) of classically excited sites to ~E(n), with~E(n) = fx 2 Z� : nU 0(x) 6= gU 0(x) for any g 2 Gg5A set B 2 B(1)0 (!) may actually contain several original components from B(0)0 (!). We take forS(B;!) the sequence of all transitions in all those components.



2. GENERAL SYSTEM 103and we introduce the set F (n) of softly excited sites byF (n) = fx 2 Z� n ~E(n) : nU 0(x) 6= dU 0(x) for any d 2 Dg:Then, for a quantum con�guration such that ! = �!, we de�ne the new extended boundaryBe( �!) = [�2[0;�]per�� ~E(n(�)) [ F (n(�))� � ��[ m[i=1�� [x2Ai U 0(x)�� �i�;and if ! 6= �!, we set Be(!) = Be( �!). Notice that B(�!) � Be(!), since the �rstset is the union of classical excitations, quantum transitions and boxes; obviously theclassical excitations and the quantum transitions also belong to Be(!), and the boxesbeing such that their diameter is smaller than 2R and they contain U(x)-excited sites ateach time, they are U 0(x)-excited. DecomposingBe(!) into connected components, we getour quantum contours, namely 
 = (B;!B). Notice that the con�guration !B containsactually also the information determining which dominant ground state lies outside B. Wecall the set B the support of 
, B = Supp
, and introduce also its \truly excited part",the core, core 
 � Supp
, by takingcore 
 = Supp
\�[�2[0;�]per� ~E(n(�))� ��[ m[i=1�� [x2Ai U 0(x)�� �i��:Finally, notice that if the contour is not wrapped around the torus in its spatial direction,there exists a space-time con�guration !
 and we have B = Be(!
).A set of quantum contours � = f
1; : : : ; 
kg is called admissible if there exists aquantum con�guration !� 2 W per� which has � as set of quantum contours. Clearly, if itexists, it is unique under assumption that it contains no loops (!� = �!�).6 We use G per�to denote the set of all collections � of admissible quantum contours.Given � 2 G per� , a set of loops � = f�1; : : : ; �`g is said admissible and compatible with� if there exists !�[� which has � as set of loops and � as set of quantum contours (it isalso unique whenever it exists). More explicitly,� two loops � = (B;!B; g�A) and �0 = (B0;!0B0 ; g�0A0) are compatible i� B [ B0 is notconnected;� using core � = [
2�core 
, a loop � = (B;!B; g�A), with B = A � [�1; �2], is com-patible with � i� B [ core � is not connected, (8.20)g�A = n�A(�) 8� 2 [�1; �2]; (8.21)� a collection of loops � = f�1; : : : ; �`g is admissible and compatible with � i� anytwo loops from � are compatible and each loop from � is compatible with �.We use Gloop� (�) to denote the set of all admissible collections � that are compatible with�. The conditions of admissibility and compatibility above can be, for any given set oftransitions fA1; : : : ;Amg, formulated as a �nite number of restrictions on correspondingtransition times f�1; : : : ; �mg. Given the restrictions on admissibility of � 2 G per� , therestrictions on � to belong to Gloop� (�) factorize. As a result, the partition function Z per�in (8.18) can be rewritten in terms of integrations over G per� and Gloop� (�) [the summation6In fact, it is unique on the projection of Supp� on Z�; but from now on, we suppose that � alsocontains information on which con�guration of G lives on � n Supp� (when G is �nite, this remark is notrelevant).



104 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSover � and � accompanied with the integration, a priori over the interval [0; �], over times�i of corresponding transitions, subjected to above formulated restrictions, c.f. (8.17)].Furthermore the contribution of �[� factorizes as a contribution of � times a product ofterms for � 2 � [BKU 1996, DFF 1996]7, we getZ per� = ZG per� d�ZGloop� (�) d� � per(!�[�)= ZG per� d�� per(!�)ZGloop� (�) d�Y�2� z(�): (8.22)Here, using f(Ai; �i); i = 1; : : : ;mg to denote the quantum transitions of � [ �, we put� per(!�[�) = mYi=1hn�[�Ai (�i � 0)jTAi jn�[�Ai (�i + 0)i exp��ZT� d(x; �)�x(n�[�U(x)(�))	;(8.23)where RB d(x; �) is the shorthand for R �0 d�Px:x��2B (used here for B = T�). Similarlyfor � per(!�). Further, the weight of a loop � = (B�;!B� ; g�A) with the set of quantumtransitions f(Ai; �i); i = 1; : : : ; `g and n� the space-time con�guration corresponding to!B� , isz(�) = expn�ZB� d(x; �)[�x(n�U(x)(�))� �x(g�U(x))]ohg�A1 jTA1 jn�A1(�1 + 0)i �� hn�A2(�2 � 0)jTA2 jn�A2(�2 + 0)i : : : hn�A`(�` � 0)jTA` jg�A`i: (8.24)Given � 2 G per� , the second integral in (8.22) is over the collections of the loops thatinteract only through a condition of non-intersection. This is the usual framework forapplying the cluster expansion of polymers.Recall the de�nition (5.18) of the truncated function; here Supp � � B�.We use L� and C� to denote the set of all loops and clusters, respectively, and useRC� dC as a shorthand for Pn > 1 RL� d�1� � � RL� d�n, in obvious meaning. Whenever � 2G per� is �xed, we use L�(�) to denote the set of all loops compatible with � and writeC 2 C�(�) whenever the cluster C contains only loops from L�(�). Again, RC�(�) dCis a shorthand for Pn > 1 RL�(�) d�1� � � RL�(�) d�n. Finally, we also need similar integralsconditioned by the time of the �rst transition encountered in the loop � or the cluster C.Namely, using C to denote the support of C, i.e. the union of the supports of the loopsof C, and IC = f�1(C); �2(C)g to denote its vertical projection8, IC = f� 2 [0; �] per :Z���\C 6= ?g, we use C(x;�)� for the set of all clustersC 2 C� with the �rst transition time�1(C) = � , for which their �rst loop �1 with support B1 = A1�[�1(C); �2], contains the sitex, A1 3 x. Then RL(x;�)� d� and RC(x;�)� dC are shorthands for the corresponding integralswith �rst transition time �xed | formally one replaces R d�1 by R I�A1 3 x��(�1(�1) ��)d�1. With this notation we can formulate the cluster expansion lemma.7The factorization is clear for spin or boson systems; for fermions it is delicate because of the anticom-mutation relations between creation and annihilation operators, but factorization holds. See the discussionin Chapter 7, and the proof in [DFF 1996], Section 4.2.8Again, if �1 > �2, the segment [�1; �2] � [0; �]per contains the point 0 � �.



2. GENERAL SYSTEM 105Lemma 8.1. Cluster expansion.For any c 2 R, �1 < (2R0)�� , �2 < R�2��0 and � > 0, there exists "0 > 0 such thatwhenever kTk 6 "0 and � 2 G per� , we have the loop cluster expansion,ZGloop� (�) d�Y z(�) = exp�ZC�(�) dC�T(C)�: (8.25)Moreover, the weights of the clusters are exponentially decaying (uniformly in � and �):ZC� dC I�C 3 (x; �)�j�T(C)jY�2C e(c��1 log kTk)jAj+�2jBj 6 � (8.26)and ZC(x;�)� dCj�T(C)jY�2C e(c��1 log kTk)jAj+�2jBj 6 � (8.27)for every (x; �) 2 T�.Proof. It is very similar to the proof of Proposition 5.3. Assuming that inequality(8.27) holds true, we have a �nite boundXn > 1 1n! ZL�(�)n d�1 : : : d�nj'T(G(�1; : : : ; �n))j nYi=1 jz(�i)j 6 ��j�j: (8.28)Lemma 8.1 then follows from Proposition 5.4. Let us turn to the proof of the two inequal-ities. Let f(�) = jz(�)j e(c��1 log kTk)jAj+�2jBj :Skipping the condition that �j is compatible with �, we de�neIn = nhZL� d�1 I�B1 3 (x; �)�+ ZL(x;�)� d�1i ZLn�1� d�2 : : : d�nj'T(�1; : : : ; �n)j nYi=1 f(�i)(8.29)(it does not depend on (x; �) 2 T�). The lemma will be completed once we shall haveestablished that In 6 n!(12�)n (assuming that � 6 1; otherwise, we show that In 6n!=2n). From Lemma 5.5, we getj'T(�1; : : : ; �n)j 6 XT tree on n vertices Ye(i;j)2T I�Bi eBj�: (8.30)Denoting i1; : : : ; in the incidence numbers of vertices 1; : : : ; n, we �rst proceed with theintegration on the loops j 6= 1 for which ij = 1; in the tree T , such j shares an edgeonly with one vertex i. The incompatibility between �i and �j, with � = (Bi;!(i)Bi ; g�iAi),Bi = Ai � [� (i)1 ; � (i)2 ], and similarly for �j, means that either Bj [ [Ai � � (i)1 ] is connected,or [Aj � � (j)1 ] [ Bi is connected. Hence, the bound for the integral over the �j that are



106 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSincompatible with �i isZL� d�j I�Bj \Bi connected�f(�j)6 2�jAijZL� d�j I�Bj 3 (x; �)�f(�j) + 2�jBijZL(x;�)� d�jf(�j)6 2��jAij+ �jBij��ZL� d�j I�Bj 3 (x; �)�f(�j) + 1� ZL(x;�)� d�jf(�j)�: (8.31)(The constant � has been introduced in order to match with the conditions of the nextlemma). ThenIn 6 n(2�)n�1 XT tree of n verticeshZL� d�1 I�B1 3 (x; �)�+ZL(x;�)� d�1if(�1)�jA1j+�jB1j�i1nYj=2�ZL� d�j I�Bj 3 (x; �)�f(�j)�jAj j+�jBj j�ij�1+1� ZL(x;�)� d�jf(�j)�jAj j+�jBj j�ij�1�:(8.32)Now summing over all trees, knowing that the number of trees with n vertices and incidencenumbers i1; : : : ; in is equal to(n� 2)!(i1 � 1)! : : : (in � 1)! 6 (n� 1)!i1!(i2 � 1)! : : : (in � 1)! ;we �nd a boundIn 6 n!(2�)n�1(1 + �)�ZL� d� I�B 3 (x; �)�f(�) ejAj+�jBj + 1� ZL(x;�)� d�f(�) ejAj+�jBj �n:(8.33)We conclude by using the following lemma which implies that the quantity between thebrackets is small.Remark: we used here translation invariance of the Hamiltonian, since we assumedthat the objects do not depend on (x; �) 2 TZ�. However, in view of the proof that statesare thermodynamically stable, we must allow perturbations which are not necessarilytranslation invariant. This objection can be answered easily by choosing for f(�) a boundthat is uniform in the location of �.Lemma 8.2.Let �1 < (2R0)�� and �2 < R�2��0. For any c 2 R and � > 0, there exists "0 > 0such that whenever kTk 6 "0 the following inequality holds true,ZL� d� I�B 3 (x; �)�jz(�)j e(c��1 log kTk)jAj+�2jBj+ZL(x;�)� d�jz(�)j e(c��1 log kTk)jAj+�2jBj 6 �;where (x; �) is any space-time site of T�.Proof. Let us �rst consider the integral over � such that its box contains a givenspace-time site. We denote by `1 the number of quantum transitions of � at times biggerthan � , and `2 the number of the other quantum transitions. The integral over � can bedone by summing over (`1+`2) quantum transitionsA11; : : : ;A1̀1 ;A21; : : : ;A2̀2 , by summingover (`1 + `2) con�gurations ni;jAij , and by integrating over times �11 < � � � < � 1̀1 , �21 < � � � <



2. GENERAL SYSTEM 107� 2̀2 . Let us do the change of variables ~�11 = �11 � � , ~�12 = �12 � �11 , : : : , ~� 1̀1 = � 1̀1 � � 1̀1�1,and ~�21 = � � �21 , : : : , ~� 2̀2 = � 2̀2�1 � � 2̀2 . Then we can write the following upper boundZL� d� I�B 3 (x; �)�jz(�)j e(c��1 log kTk)jAj+�2jBj6 X`1;`2 > 1 XA11;:::A2̀2[i;j �Aij=A3xA connected Xn1;1A11 ;:::;n2;`2A2̀2 =2GA Z 10 d~�11 : : : d~� 2̀2 Yi=1;2 `iYj=1 jhni;jA jTAij jni;j+1A ije(c��1 log kTk)j �Aij j e�~� ijPx�A[�x(ni;jU(x))��x(gU(x))] e~� ijR��2 (8.34)where gA 2 GA is the con�guration in which the loop � is immersed (if the constructiondoes not lead to a possible loop, we �nd a bound by picking any gA 2 GA). Remark thatwe neglected a constraint on the sum over con�gurations, namely n1;1A = n2;1A . It is usefulto note that the sums over `1; `2 and over the quantum transitions are �nite, otherwisethey cannot constitute a loop.Using the de�nition (2.18) of the norm of a quantum interaction, we haveXA:A=B jhn0BjTA jnBij 6 kTkjBj:Furthermore Xx�A[�x(ni;jU(x))� �x(gU(x))] > R���0as claimed in Property (3.4). Hence we have, since the number of con�gurations on A isbounded with SjAj,ZL� d� I�B 3 (x; �)�jz(�)j e(c��1 log kTk)jAj+�2jBj6 X`1;`2 > 1 XA11;:::A2̀2[i;j �Aij=A3xA connected Yi=1;2 `iYj=1 �kTk1��1(2R0)�S ec(2R0)� �jAij jR���0 �R��2 : (8.35)This is a small quantity since the sums are �nite, by taking kTk small enough. Now weturn to the second term, namelyZL(x;�)� d�jz(�)j e(c��1 log kTk)jAj+�2jBj :The proof is similar; we �rst sum over the number of transitions `, then over ` transitionsA1; : : :A` with A = [i �Ai 3 x, A connected. Then we choose ` � 1 intermediate con�gu-rations. Finally, we integrate over `� 1 time intervals. The resulting equation looks veryclose to (8.34) and is small for the same reasons.Now, we single out the class of small clusters. Namely, a cluster is small if the sequenceof its quantum transitions belongs to the list S. To be more precise, we have to specifythe order of transitions: considering a cluster C � (�1; : : : ; �k) and using S(�(`)), ` =1; : : : ; k, to denote the sequence of quantum transitions of the loop �(`) = (B(`);!B(`) ; g�(`)A ),



108 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSS(�(`)) � S(B(`);!B(`)), we take the sequence S(C) obtained by combining the sequencesS(�(1)); : : : ; S(�(k)) in this order. A cluster C is said to be small if S(C) 2 S, it is largeotherwise. We use C small� to denote the set of all small clusters on the torus T�.The local contribution to the energy at time � , when the system is in a state nU(x)(�),is �x(nU(x)(�)). Similarly, we will introduce the local contribution of loops (and smallclusters of loops) in the expansion of the partition function | the e�ective potential	�A(nA(�)). The latter is a local quantity in the sense that it depends on n only on theset A at time � . An explicit expression of 	�A(gA) with g 2 G is, in terms of small clusters,	�A(gA) + �ZC small� dC�T(C)jIC j I�C � gA; AC = A; IC 3 0�: (8.36)Here, again, C is the support of C, AC its horizontal projection onto Z�, AC = fx 2Z�;x� [0; �]per\C 6= ?g, and IC its vertical projection, jAC j and jIC j their correspondingareas, and the condition C � gA means that each loop of C is immersed in the groundstate g. Notice that the \horizontal extension" of any small cluster is at most R: if C isa small cluster, diam(AC) 6 R. The de�nitions of Section 4.2, Chapter 3, are now clear,once we identify the e�ective potential 	 de�ned in (3.5) as the limit � ! 1 of (8.36).Namely, 	 = lim�!1	�:Our assumptions in Section 4.4, Chapter 3, concern the limit � ! 1 of the e�ectivepotential, but at non zero temperature we have to work with 	�. To trace down thedi�erence, we introduce  � = 	� � 	. Notice that (8.36) implies 	�A(nA) = 0 whenevernA =2 GA or diamA < 2R0.Recalling that if C � T�, ~C is the smallest box containing C, we introduce, for anycluster C 2 C small� , the function�T(C; �) = �T(C)jIC j ZIC d�� I�C � ��� I�n�AC (�) 2 GAC ;C � n�AC (�)��: (8.37)Here, the �rst indicator function in the parenthesis singles out the clusters such that eachloop is compatible with �, while the second indicator concerns the clusters for whichn�AC (�) 2 GAC and each of their loop is immersed in the con�guration n�A(�) (extended asa constant to all the time interval IC). Observing that �T(C; �) = 0 whenever ~C\core � =emptyset, we split the integral over small clusters into its bulk part expressed in terms ofthe e�ective potential and boundary terms \decorating" the quantum contours from �.Lemma 8.3.For any �xed � 2 G�, one hasZC small� (�) dC�T(C) = �ZT� d(A; �)	A(n�A(�))� ZT� d(A; �) �A(n�A(�)) + ZC small� dC�T(C; �):The term �T(C; �) vanishes whenever ~C \ core � = ?.Proof. To get the equality of integrals, it is enough to rewriteZC small� (�) dC�T(C) = ZC small� dC�T(C) I�C � �� (8.38)



2. GENERAL SYSTEM 109and�ZT� d(A; �)	�A(n�A(�)) = ZC small� dC�T(C)jIC j ZIC d� I�n�AC (�) 2 GAC ;C � n�AC (�)�:(8.39)Moreover, whenever ~C \ core � = ?, the con�guration n�AC (�) belongs to GAC , and it isconstant, for all � 2 IC . Under these circumstances, the condition C � � is equivalent toC � n�AC (�) and the right hand side of (8.37) vanishes.Whenever � 2 G� is �xed, let Wd(�) � T� be the set of space-time sites in the stated, i.e. Wd(�) = f(x; �) 2 T� : n�U 0(x)(�) = dU 0(x)g:Notice that T� = Supp�[ [d2DWd(�); Wd(�) \Wd0(�) = ? if d 6= d0;and the set Supp� \Wd(�) is of measure zero (with respect to the measure d(x; �) onT�). Let us recall that the equivalent potential � satis�es the equalityPx2��x(nU(x)) =PA��(�A(nA) +	A(nA)) + constj�j for any con�guration n on the torus �; actually, wecan take const = 0, since � and �0 = � + const are also physically equivalent, and �0satis�es the same assumptions as �.Lemma 8.4.The partition function (8.22) can be rewritten asZ per� = ZG per� d�Yd2D e�jWd(�)je(d) Y
2� z(
) eR(�) :Here the weight z(
) of a quantum contour 
 = (B;!B) with the sequence of transitions(A1; : : : ;Am) at times (�1; : : : ; �m) isz(
) = mYi=1hn
Ai(�i � 0)jTAi jn
Ai(�i + 0)i expn�ZB d(x; �)�x(n
U 0(x)(�))o: (8.40)The rest R(�) is given byR(�) = ZC�(�)nC small� (�) dC�T(C)� ZT� d(A; �) �A(n�A(�)) + ZC small� dC�T(C; �): (8.41)Proof. Using the Lemmas 8.1 and 8.3 to substitute in (8.22) the contribution of loopsby the action of the e�ective potential, we getZ per� = ZG per� d�n mYi=1hn�Ai(�i � 0)jTAi jn�Ai(�i + 0)ioexpn�ZT� d(A; �)(�A(n�A(�)) + 	A(n�A(�)))o eR(�) : (8.42)



110 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSReplacing � +	 by the physically equivalent potential �, we obtainZ per� = ZG per� d�n mYi=1hn�Ai(�i � 0)jTAi jn�Ai(�i + 0)ioexp��ZSupp � d(x; �)�x(n
U 0(x)(�))� Yd2D e�e(d)jWd(�)j eR(�) : (8.43)We get our lemma by observing that the product over quantum transitions and the �rstexponential factorize with respect to the quantum contours, as it was the case for theloops (for fermions the sign arising because of anticommutation relations also factorize;we again refer to [DFF 1996] for the proof).Our goal is to obtain a classical lattice system in �+1 dimensions. Thus we introducea discretization of the continuous time direction, by choosing suitable parameters ~� > 0and N 2 N with � = N ~�� .9 Setting L� to be the (� + 1)-dimensional discrete torusL� = � � f1; : : : ; Ng per | let us recall that � has periodic boundary conditions in allspatial directions | and using C(x; t) � TZ� to denote, for any (x; t) 2 L� , the segmentx� ( ~��(t� 1); ~��t], we have T� = [(x;t)2L� C(x; t).For any M � L� , we set C(M) to be the union C(M) = [(x;t)2MC(x; t) � T�.Conversely, if B � T�, we takeM(B) � L� to be the smallest set such that C(M(B)) � B.Given a connected10 setM � L� and a collection of quantum contours � 2 G per� , we de�ne'(M ; �) = ZC�(�)nC small� (�) dC I�M(C) =M��T(C) ++ ZC small� dC I�M(C) =M;C 6� C(Supp�)��T(C; �)� ZM(A��)=M d(A; �) �A(n�A(�))(8.44)and ~R(�) = ZC small� dC I�C � C(Supp�)��T(C; �): (8.45)We have separated the contributions of the small clusters insideC(Supp�) � C(M(Supp�)),because they are not necessarily a small quantity, and it is impossible to expand them.On the contrary, '(M ; �) is small, and hence it is natural to writeeR(�) = e ~R(�) XM YM2M� e'(M ;�) � 1�; (8.46)with the sum running over all collections M of connected subsets of L� .Let SuppM = [M2MM . Given a set of quantum contours � 2 G per� and a col-lection M, we introduce contours on L� by decomposing the set M(Supp�) [ SuppMinto connected components [notice that if (x; t) =2 M(Supp�) [ SuppM, then C(x; t) �[d2DWd(�)]. Namely, a contour Y is a pair (SuppY; �Y ) where SuppY � L� is a (non-empty) connected subset of L� , and �Y is a labeling of connected components F of@C(SuppY ), �Y (F ) = 1; : : : ; r. We write jY j for the length (area) of the contour Y ,9Remark the di�erence from Chapter 7; here the vertical length of a segment is ~�=� and it dependson kTk, since so does the quantum Peierls constant �.10Connectedness in L� is meant in standard way via nearest neighbours.



2. GENERAL SYSTEM 111i.e. the number of sites in SuppY . A set of contours Y = fY1; : : : ; Ykg is admissible ifthe contours are mutually disjoint and if the labeling is constant on the boundary of eachconnected component of T� n[Y 2YC(SuppY ). Finally, given an admissible set of contoursY, we de�ne Gd(Y) to be the union of all connected components M of L� n [Y 2Y SuppYsuch that C(M) has label d on its boundary.Consider now any quantum con�guration ! 2 W per� yielding, together with a collectionM, a �xed set of contours Y. Summing over all such con�gurations ! and collectionsM,we get the weight to be attributed to the set Y. Let �! be the collection of quantumcontours corresponding to !, [Y 2Y SuppY = M(Supp�!) [ SuppM. Given that thecon�gurations ! are necessarily constant with no transition on T� nC([Y 2Y SuppY ), weeasily see that the weight factor splits into product of weight factors of single contoursY 2 Y. Namely, for the weight z of a contour Y we get the expressionz(Y ) = ZG per� (Y ) d�Y
2� z(
) Yd2D e�e(d)jWd(�)\C(Supp Y )j e ~R(�)XM I�M(Supp�)[ SuppM = SuppY � YM2M� e'(M ;�) � 1�; (8.47)where G per� (Y ) is the set of collections � of quantum contours compatible with Y , � 2G per� (Y ) if Supp� � SuppY and the labels on the boundary of Supp� match with labelsof Y . Thus, we can �nally rewrite the partition function in a form that agrees with thestandard Pirogov-Sinai setting, namelyZ per� =XY Yd2D e� ~�� e(d)jGd(Y)j YY 2Y z(Y ); (8.48)with the sum being over all admissible sets of contours on L� .In the next section we will evaluate the decay rate of contours weights in a preparationto apply the Pirogov-Sinai theory to prove Theorems 3.5, 3.6 and 3.7.2.2. Exponential decay of the weight of the contours. In this section we showthat the weight z has exponential decay with respect to the length of the contours. Webegin by a lemma proving that the contribution ofM is small, that we shall use in Lemma8.6 below for the bound of z.Lemma 8.5.Under the Assumptions 1{4, for any c < 1 there exist constants �0, ~�0 < 1, and"0 > 0 such that for any � > �0, ~�0 6 ~� < 2~�0, and kTk 6 "0, one hasXM3(x;t)�� e'(M ;�) � 1�� ecjM j 6 1for any contour Y and any set of quantum contours � 2 G per� (Y ).Proof. We show that XM3(x;t)��'(M ; �)�� ecjM j 6 1:This implies that j'(M ; �)j 6 1 and consequently Lemma 8.5 holds | with a slightlysmaller constant c.



112 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSLet us consider separately, in (8.44), the three terms on the right hand side: (a)the integral over big clusters, (b) the integral over small clusters, and (c) the expressioninvolving  � .(a) Big clusters. Our aim is to estimateJ = XM3(x;t) ecjM j ZC�(�)nC small� (�) dC I�M(C) =M����T(C)��:Since M(C) = M and M 3 (x; t), the segment C(x; t) either intersects a quantumtransition of C, or it is contained in a box B belonging to a loop of C (both possibilitiesmay occur at the same time). In the �rst case we start the integral over clusters bychoosing the time for the �rst quantum transition, which yields a factor ~�=�. In thesecond case we simply integrate over all loops containing the given site. In the same time,given a cluster C = (�1; : : : ; �n), �i = (Bi;!(i)Bi ; g�iAi) and Bi = Ai� [� (i)1 ; � (i)2 ], the conditionM(C) =M implies that nXi=1njAij+ �~� jBijo > jM j: (8.49)Using it to bound jM j, we get the estimateJ 6 ~�� ZC(x;�)� nC small� dCj�T(C)jY�2C ecjAj+c�~� jBj+ ZC�nC small� dC I�C 3 (x; �)�j�T(C)jY�2C ecjAj+c�~� jBj : (8.50)Taking, in Lemma 4.1, the constant c as above as well as �1 = 12(2R0)�� , �2 = c�=~�,� = 1, and choosing the corresponding "0(c; �1; �2; �), we can bound the second term of(8.50), for any kTk 6 "0, with the help of (8.26) once ~� is chosen large enough to satisfy~�� > c�0R2� : (8.51)To estimate the �rst term of (8.50), we �rst consider the contribution of those clustersfor which ~�� 6 Y�2C kTk 12 (2R0)�� jAj:Applying it together with (8.51) we can directly use the bound (8.27).Thus it remains to estimate the contribution of those terms for which2(2R0)� X�2C jAj < log(�=~�)log kTk : (8.52)Let us �rst �x ~� and "0 6 "0(c; �1; �2; �) with the constants c, �1, �2, and � as above,so that ~�"0 > c�0R2� (8.53)and, in the same time, ~� 6 "k�2k0(2R0)��0 (8.54)



2. GENERAL SYSTEM 113for a suitable large k0 (we also assume that "0 6 1). Here k is the constant that appearsin Assumption 2, �(kTk) > kTkk. Observing further that �(kTk) can be taken toincrease with kTk (one can always consider a weaker lower bound � when taking smallerkTk), we conclude that (8.51), as well as the condition12(2R0)� log(�=~�)log kTk 6 k0;are satis�ed for every kTk 6 "0. Thus, it su�ces to �nd an upper bound toJ 0 = ~�� ZC(x;�)� nC small� dCj�T(C)j I�X�2C jAj < k0�: (8.55)The main problem in estimating this term stems from the factor 1=� that may be largeif kTk is small. Thus, to have a bound valid for all small kTk, some terms, coming fromthe integral, that would suppress this factor must be displayed.The condition P�2C jAj < k0 will be used several times by applying its obvious con-sequences: (i) the number of loops in C is smaller than k0, (ii) the number of transitionsfor each loop is smaller than k0, (iii) each transition A is such that jAj < k0, and (iv) thedistance between each transition and x is smaller than k0.Furthermore, we use Assumption 3 to bound the contribution of the transitions of C;recalling the de�nition (8.24) of the weight of �, we have, for any large C,Y�2C jz(�)j 6 b1(kTk)� Y�2C expn�ZB d(x; �)[�x(n�U(x)(�))� �x(g�U(x)(�))]o6 b1(kTk)� Y�2C e�R�2��0jBj : (8.56)In the last inequality we used Assumption 1 in the form of the bound (3.4) as well as thelower bound j�2 � �1j = jBjjAj > jBjR� for the support B = A� [�1; �2] of the loop �.For any � 2 C = (�1; : : : �n), let � be the time at which the �rst transition in C occurs(we assume that it happens for the \�rst" loop �1) and � � be such that � + � � is the timeat which the �rst transition in � occurs (� �1 = 0). Referring to the condition (i) on thenumber of loops in C, we get the inequalityX� 6=�1 j� �j 6 k0X� jBj;and thus also 1 6 Y� e� �02k0R2� j�� j Y� e 12R�2��0jBj :Integrating now over the time of the �rst transition for each � 2 C, � 6= �1, and takinginto account that j'T(�1; : : : ; �n)j 6 nn�2, we getJ 0 6 ~�b1(kTk) k0Xn=1 nn�2(n� 1)!�2k0R2��0 �n�1nZL(x;�)� d� e� 12R�2��0jBj I�� : k0�on: (8.57)Here the constraint I��i : k0� means that the loop �i satis�es the conditions (ii){(iv) above.We have then a �nite number of �nite terms, the contribution of which is bounded by a�xed number K <1 (depending on "0, ~�, and k0). Thus J 0 6 ~�b1(kTk)K which can bemade small by taking kTk su�ciently small.



114 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONS(b) Small clusters. Let us �rst notice that j�T(C; �)j 6 j�T(C)j, and since M(C) =M , inequality (8.49) is valid. Moreover C must contain at least one of the two boundarypoints (y; t ~�� � ~�2�) of some cell C(y; t) for which dist(x; y) 6 R. Indeed, given that Cis small and in the same time ~C \ core � 6= ? (c.f. Lemma 8.3), this is the only way tosatisfy also C 6� C(Supp�) [c.f. (8.44)]. Thus it su�ces to use again (8.26) and (8.51) toestimate (2R)� ZC small� dC I�C 3 (x; �)�j�T(C)jY�2C ecjAj+c�~� jBj :(c) Bound for  �. Finally, we estimate the expression involving  � . We �rst observethat e�� j �A(gA)j 6 1 (8.58)for any A � Z� and with � = 12R�2��0, Indeed,e�� j �A(gA)j = e�� j	�A(gA)�	A(gA)j == e�� �����ZC small� dC I�C � gA; AC = A; IC 3 0; C � �� [0; �] per; jIC j = ���T(C)jIC j ++ ZC small� dC I�C � gA; AC = A; IC 3 0; C � �� [�1;1]; jIC j > ���T(C)jIC j ����: (8.59)The �rst integral above corresponds to clusters wrapped around the torus in verticaldirection, while the second one assumes integration over all clusters in �� [�1;1]. Forany C above, jIC j > � and thus e�� 6 Y�2C e�jBj :Observing now that every cluster in both integrals necessarily contains in its support atleast one of the points (x; 0), x 2 A, and using the fact that diamA 6 2R, we can boundthe �rst integral by (2R)�� ZC small� dC I�C 3 (x; 0)�j�T(C)jY�2C e�jBj ;which can be directly evaluated by (8.26). The same bound can be actually used also forthe second integral, once we realize that the estimate (8.26) is uniform in �.Using now the fact that  �A = 0 if diamA > 2R, the condition M(A � f�g) = Mimplies that M has less than (2R)� sites, hence ecjM j 6 ec(2R)� . Furthermore, referringto (8.58), we haveZT� d(A; �)j �A(�)j I�M(A� f�g) =M� ecjM j 6 ~�� e� 12R�2��0�+c(2R)� ; (8.60)which can be made small for � su�ciently large and concludes thus the proof of the lemma.Using Lemma 8.5 and introducing e0 = mind2D e(d), we can estimate the weight z ofthe contours in the discrete space of cells.



2. GENERAL SYSTEM 115Lemma 8.6.Under the Assumptions 1{4, for any c < 1, there exist �0; ~�0 < 1 and "0 > 0 suchthat for any � > �0, ~�0 6 ~� < 2~�0, and kTk 6 "0, one hasjz(Y )j 6 e� ~�� e0jY j e�cjY jfor any contour Y .Proof. For a given � (such thatM(Supp�) � SuppY ) with transitions fA1; : : : ;Amgat times f�1; : : : ; �mg, we de�ne A(�) = [mi=1 [x2Ai [U 0(x) � �i], A = M(A(�)), andE � SuppY n A to be the set of sites (x; t) such that n�U 0(x)(�) =2 DU 0(x) for some(x; �) 2 C(x; t). The latter can be split into two disjoint subsets, E = Ecore [ Esoft ,with (x; t) 2 Ecore whenever n�U 0(x)(�) =2 GU 0(x) for some (x; �) 2 C(x; t). The conditionM(Supp�) [ SuppM = SuppY in (8.47) implies the inequalityecjY j 6 ec(2R)� jA(�)j ecjEj YM2M ecjM j :From de�nitions (8.47) of z(Y ) and (8.40) of z(
), and using Assumption 2, we haveecjY j jz(Y )j 6 XA�Supp Y e� ~��e0jSupp Y nAj XE�Supp Y nA XEcore�E e�( ~��c)jEnEcore je�( ~�� �02 (2R)���c)jEcore j ZG per� d� I�M(A(�)) = A;M(core �) = Ecore �mYi=1��hn�Ai(�i � 0)jTAi jn�Ai(�i + 0)i�� ec(2R)� jAij expn�ZC(A) d(x; �)�x(n�U 0(x)(�))oej ~R(�)j XM;SuppM�SuppY YM2M�� e'(M ;�) � 1�� ecjM j : (8.61)All elements in M are di�erent, because it is so in the expansion (8.46). Therefore wehave XM;SuppM�Supp Y YM2M�� e'(M ;�) � 1�� ecjM j 6 Xn > 0 1n!h XM�SuppY �� e'(M ;�) � 1�� ecjM j in6 Xn > 0 1n!hjY j XM3(x;t)�� e'(M ;�) � 1�� ecjM j in(8.62)and using Lemma 8.5 this may be bounded by ejY j .In (8.45) clusters are small, and they must contain a space-time site (x; �) such thatthere exists x0 with (x0; �) 2 core � and dist(x; x0) < R. So we have the boundj ~R(�)j 6 (2R)� jcore �jZC small� dC I�C 3 (x; �)����T(C)��;since j�T(C; �)j 6 j�T(C)j. Taking now, in Lemma 8.1, the constants c = �1 = �2 = 0and � = �04(2R)2� , and choosing the corresponding "0, we apply (8.26) to get, for anykTk 6 "0, the boundj ~R(�)j 6 �04 (2R)�� jcore �j 6 ~���04 (2R)�� jEcore j+ �04 (2R)�� jcore � \ C(A)j:



116 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSAssuming ~� > c and ~�� �04 > (2R)�c [c.f. (8.51)], we bounde�( ~��c)jEnEcore j e�( ~�� �04 (2R)���c)jEcore j 6 1:Inserting these estimates into (8.61), we getecjY j jz(Y )j 6 e� ~�� e0jY j ejY j XA�Supp Y 3jSupp Y nAj ZG per� d� I�M(A(�)) = A�mYi=1��hn�Ai(�i � 0)jTAi jn�Ai(�i + 0)i�� ec(2R)� jAijexpn�ZC(A) d(x; �)[�x(n�U 0(x)(�)) � e0 � �04 (2R)�� I�(x; �) 2 core ��]o: (8.63)To estimate the above expression, we will split the \transition part" of the consideredquantum contours into connected components, to be called fragments, and deal with themseparately. Even though the weight of a quantum contour cannot be partitioned into thecorresponding fragments,11 we will get an upper bound combined from fragment bounds.Consider thus the set Â(�) = core � \ C(A(�))and the fragments �i = (Bi;!Bi) on the components Bi of Â(�), Â(�) = [ni=1Bi, !Bi isthe restriction of !� onto Bi.From Assumption 2, we haveZC(A) d(x; �)h�x(n�U 0(x)(�)) � e0 � �04 (2R)�� I�(x; �) 2 core ��i > 14 (2R)���0 nXi=1 jBij:Let us introduce a bound for the contribution of a fragment � with transitions Aj ; j =1; : : : ; k, ẑ(�) = e� 14 (2R)���0jBj kYj=1 jhn�Aj (�1 � 0)jTAj jn�Aj (�1 + 0)ij ec(2R)� jAj j :Then, integrating over the set FC(A) of all fragments in C(A), we getecjY j jz(Y )j 6 e� ~�� e0jY j ejY j XA�Supp Y 3j SuppY nAj Xn > 0 1n!�ZFC(A) d�ẑ(�)�n: (8.64)Anticipating the bound RFC(A) d�ẑ(�) 6 jAj, we immediately get the claim,ecjY j jz(Y )j 6 e� ~�� e0jY j e3jY j ;with a slight change of constant c! c� 3.A bound on the integral of fragments. Let us �rst consider short fragments � = (B;!B)satisfying the condition 12 kXj=1 jAj j 6 log(�=~�)log kTk : (8.65)11In fact, it partitions in the case of spins or bosons. Only the sign coming with fermions bringsproblem.



2. GENERAL SYSTEM 117The integral over the time of occurrence of the �rst transition yields the factor ~�=�.Notice that � is not a loop. This follows from the construction of quantum contours andthe fact that B is a connected component of Â(�), where every transition is taken togetherwith its R-neighbourhood. Thus, either its sequence of transitions does not belong to S,or the starting con�guration does not coincide with the ending con�guration. In the �rstcase we use Assumption 3, in the second case Assumption 4, and since (8.65) means thatthe sum over transitions is bounded, we can writeZFshortC(A) d�ẑ(�) 6 12 jAj: (8.66)Finally, we estimate the integral over �'s that are not short. We haveZFC(A)nFshortC(A) d�ẑ(�) 6 jAj ~�� ZF(x;�)C(A)nFshortC(A) d�ẑ(�): (8.67)Here F (x;�)C(A) is the set of all fragments � whose �rst quantum transition (A1; �1) is suchthat x 2 A1 and � = �1. Whenever � is not short, we have1 6 �~� kYj=1 kTk� 12 jAj j:Thus, de�ning ẑ0(�) = e� 14 (2R)���0jBj kYj=1hkTk 12 ec(2R)�+1 ijAj j; (8.68)we �nd the bound jAjZF(x;�) d�ẑ0(�):Here, slightly overestimating, we take for F(x; �) the set of all fragments containing aquantum transition (A; �) with x 2 A.The support B of a fragment � = (B;!B) 2 F(x; �), is a �nite union of verticalsegments (i.e. sets of the form fyg � [�1; �2] � T�) and k horizontal quantum transitionsA1; : : : ; Ak.We �nish the proof by showing by induction the boundZF(x;� ;k) d�ẑ0(�) 6 1 (8.69)with F(x; � ; k) denoting the set of fragments from F(x; �) with at most k quantum tran-sitions.Consider thus a fragment � with k horizontal quantum transitions connected by ver-tical segments. Let (A; �) be the transition containing the point (x; �) and let (A1; � +�1); : : : ; (A`; � + �`) be the transitions that are connected by (one or several) vertical seg-ments of the respective lengths j�1j; : : : ; j�`j with the transition (A; �). If we remove allthose segments, the fragment � will split into the \naked" transition (A; �) and addi-tional �̀ � ` fragments �1; : : : ; ��̀, such that each fragment �j , j = 1; : : : ; �̀, belongs toF(yj ; � + �j; k � 1) with yj 2 A. Taking into account that the number of con�gurations(determining the possible vertical segments attached to A) above and below A is bounded



118 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSby S2jAj and that the number of possibilities to choose the points yj is bounded by jAj�̀,we getZF(x;� ;k) d�ẑ0(�) 6 XA;dist(A;x)<R�kTk 12 ec(2R)�+1 S2�jAj 1X�̀=1 jAj�̀�̀! Z d�1� � � Z d��̀e� 12 (2R)���0(�1+���+��̀) �̀Yj=1ZF(yj ;�+�j ;k�1) d�ẑ0(�j)6 XA;dist(A;x)<R�kTk 12S2 ec(2R)�+2 �jAj e2(2R)�=�06 1 (8.70)once kTk is su�ciently small.In the application of Pirogov-Sinai theory we shall also need a bound on derivativesof the weight of contours.Lemma 8.7.Under the Assumptions 1{5, for any c < 1, there exist constants �; �0; ~�0 < 1 and"0 > 0 such that if � > �0, ~�0 6 ~� < 2~�0, and kTk+Pr�1i=1 k @@�i Tk 6 "0, one has�� @@�i z(Y )�� 6 �~�jY j e� ~�� e�0 jY j e�cjY jfor any contour Y .Proof. From the de�nition (8.47) of z, one has�� @@�i z(Y )�� 6 jz(Y )j�X
2��� @@�i z(�)�� +Xd2D��Wd \ C(SuppY )���� @@�i e�(d)��+ �� @@�i ~R(�)���+ ZG per� (Y ) d�Y
2� jz(
)jYd2D e�e�(d)jWd\C(Supp Y )j ej ~R(�)jXM I�M(Supp�)[SuppM = SuppY � XM2M��� e'(M ;�) @@�i'(M ; �)��� YM 02M;M 0 6=M�� e'(M 0;�)�1��:(8.71)The bound for j @@�i z(�)j is standard, see [BKU 1996], and j @@�i e�(d)j is assumed to bebounded in Assumption 5. For the other terms we have to control clusters of loops. Sincewe have exponential decay for z(�) with any strength (by taking � large and kTk small),we have the same for @@�i z(�) (by taking � larger and kTk smaller). The integrals over Ccan be estimated as before, the only e�ect of the derivative being an extra factor n (whenthe clusters have n loops).2.3. Expectation values of local observables and construction of pure states.So far we have obtained an expression (8.48) for the partition function Z per� of the quantummodel on torus � in terms of that of a classical lattice contour model with the weights ofthe contours showing an exponential decay with respect to their length. Using the sameweights z(Y ), we can also introduce the partition functions Zd�(L) with the torus � replacedby a hypercube �(L) and with �xed boundary conditions d. Namely, we take simply the



2. GENERAL SYSTEM 119sum only over those collections Y of contours whose external contours are labeled by d andare not close to the boundary.12 Notice, however, that here we are de�ning Zd�(L) directly interms of the classical contour model, without ensuring existence of corresponding partitionfunction directly for the original model. We will use these partition functions only as atool for proving our Theorems that are stated directly in terms of quantum models.To be more precise, we can extend the de�nition even more and consider, instead ofthe torus �, any �nite set V � L = Z� � f1; : : : ; Ng per. There is a class of contours thatcan be viewed as having their support contained in V � L. For any such contour Y weintroduce its interior IntY as the union of all �nite components of L n SuppY and Intd Yas the union of all components of IntY whose boundary is labeled by d. Recalling thatwe assumed � > 2, we note that the set L n (Supp Y [ IntY ) is a connected set, implyingthat the label �Y (�) is constant on the boundary of the set V (Y ) = SuppY [ IntY . Wesay that Y is a d-contour, if �Y = d on this boundary. Two contours Y and Y 0 are calledmutually external if V (Y ) \ V (Y 0) = ?. Given an admissible set Y of contours, we saythat Y 2 Y is an external contour in Y, if SuppY \ V (Y 0) = ? for all Y 0 2 Y, Y 0 6= Y .The sets Y contributing to ZdV are such that all their external contours are d-contours anddist(Y; @V ) > 1 for every Y 2 Y.In this way we �nd ourselves exactly in the setting of standard Pirogov-Sinai theory, seeChapter 6. In particular, for su�ciently large � and su�ciently small kTk+Pr�1i=1 k @@�iTk,there exist functions f�;�(d), metastable free energies, such that the condition Re f�;�(d) =f0, with f0 � f�;�0 de�ned by f0 = mind02D Re f�;�(d0), characterizes the existence of apure stable phase d. Namely, as will be shown next, a pure stable phase h�id� exists and isclose to the pure ground state jdi.There is one subtlety in the de�nition of f�;�(d). Namely, after choosing a suitable~�0, given �, there exist several pairs ( ~�;N) such that ~� 2 ( ~�0; 2~�0) and N ~� = �. To bespeci�c, we may agree to choose among them that one with maximal N . The functionf�;�(d) is then uniquely de�ned for each � > �0. Notice, however, that while increasing�, we pass, at the particular value �N = N ~�0, from discretization of temporal size Nto N + 1. As a result, the function f�;�(d) might be discontinuous at �N with � = 1being an accumulation point of such discontinuities. Nevertheless, these discontinuitiesare harmless. They can appear only when Re f�;�(d) > f0 and do not change anything inthe following argument.Before we come to the construction of pure stable phases, notice that the �rst claimof Theorem 3.6 (equality of f0 with the limiting free energy) is now a direct consequenceof the bound ���Z per� � jQj e�~�f0NL� ��� 6 e�~�f0NL� O( e�constL ) (8.72)[c.f. [BKU 1996], (7.14)]. Here Q = fd; Re f�;�(d) = f0g.The expectation value of a local observable K is de�ned ashT i per� = TrK e��H per�Tr e��H per� : (8.73)So far we have obtained a contour expression for Z per� = Tr e��H per� . We retrace here thesame steps for Z per� (K) + TrK e��H per� . Duhamel expansion (8.16) for Z per� (K) leads12In the terminology of Pirogov-Sinai theory we rather mean diluted partition functions | see themore precise de�nition below.



120 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSto an equation analogous to (8.17),Z per� (K) = Xm > 0 Xn0�;:::;nm� XA1;:::;Am�Ai�� Z0<�1<:::<�m<� d�1 : : : d�mhn0�jK jn1�ie��1V per� (n1�) hn1�jTA1 jn2�i e�(�2��1)V per� (n2�) : : : hnm� jTAm jn0�i e�(���m)V per� (n0�) : (8.74)Con�gurations n0� and n1� match on � n SuppK (SuppK � � is a �nite set due to thelocality of K), but may di�er on SuppK if K is an operator with non zero o�-diagonalterms. Let W per� (K) be the set of quantum con�gurations with n�(�) that is constantexcept possibly at [mi=1(Ai � �i) [ (SuppK � 0). ThenZ per� (K) = ZW per� (K) d!T�hn0�jK jn1�i� per(!T�): (8.75)We identify loops with the same iteration scheme as before, starting with the setB(0)(!)[(SuppK � 0) instead of B(0)(!) only. This leads to the set BK(!). Removingthe loops, we de�ne BKe (!), whose connected components form quantum contours. Thereis one special quantum contour, namely that which contains SuppK � 0. Let us denote itby 
K and de�ne its weight [see (8.40)]zK(
K) = hn
KSuppK(�0)jK jn
KSuppK(+0)i mYi=1hn
KAi (�i � 0)jTAi jn
KAi (�i + 0)iexpn�ZB d(x; �)�x(n
KU 0(x)(�))o: (8.76)Let �K = f
K ; 
1; : : : ; 
kg be an admissible set of quantum contours, de�ning a quantumcon�guration !�K 2 W per� (K). Then we have an expression similar to that of Lemma 8.4,Z per� (K) = ZG per� (K) d�K Yd2D e�jWd(�K )je(d) zK(
K) Y
2�Knf
Kg z(
) eR(�K ) ; (8.77)with R(�K) as in (8.41) with � replaced by �K .Next step is to discretize the lattice, to expand eR(�K ) , and if Y K is the contour thatcontains SuppK � 0 � L� , to de�ne zK(Y K) [see (8.47)]:zK(Y K) = ZG per� (Y K) d�KzK(
K) Y
2�Knf
Kg z(
) Yd2D e�e(d)jWd(�K)\C(Supp Y K)j e ~R(�K)XM I�M(Supp�K [ SuppM = SuppY K� YM2M� e'(M ;�K) � 1�: (8.78)We also need a bound for zK(Y K). It is clear that the situation is the same as forLemmas 8.5 and 8.6, except for a factor hn
KSuppK(�0)jK jn
KSuppK(+0)i that is boundedby kKk. We can thus summarize:Lemma 8.8.



2. GENERAL SYSTEM 121Under the Assumptions 1{4, for any c <1, there exist �0; ~�0 < 1, and "0 > 0 suchthat if � > �0, ~�0 6 ~� < 2~�0 and kTk 6 "0, we haveZ per� (K) = XYK=fY K ;Y1;:::;Ykg Yd2D e� ~��e(d)jGd(YK)j zK(Y K) YY 2YKnfY Kg z(Y ); (8.79)for every local observable K, withjzK(Y K)j 6 kKk ecj SuppKj e� ~�� e0jYK j e�cjYK jfor any contour Y K .In a similar manner as at the beginning of this section, we can introduce ZdV (K) forany V � L by restricting ourselves in the sum (8.79) to the collections YK whose allexternal contours are d-contours and dist(Y; @V ) > 1 for every Y 2 YK . Thus we cande�ne the expectation value hKidV = ZdV (K)ZdV (8.80)for any V � L and, in particular, the expectation hKid�(L) for a hypercube �(L).This is exactly the setting discussed in detail in [BKU 1996]. We can use directly thecorresponding results (c.f. [BKU 1996], Lemma 6.1) to prove �rst that the limiting stateh�id� exists. Further, retracing the proof of Theorem 2.2 in [BKU 1996] we prove that thelimit hKi per� = lim�%Z� TrK e��H per�Tr e��H per� (8.81)exists for every local K (proving thus Theorem 3.5). Moreover,hKi per� = 1QXd2QhKid� ; (8.82)where, again, Q denotes the set of stable phases, Q = fd; Re f�;�(d) = f0g. Thus weproved the claim d) of Theorem 3.6.Also the assertion c) follows in standard manner from contour representation employingdirectly the exponential decay of contour activities and corresponding cluster expansion[c.f. [BKU 1996], (2.27)].Before passing to the proof of b), we shall verify that h�id� is actually a pure stablestate according to our de�nition, i.e. a limit of thermodynamically stable states.13 To thisend, let us �rst discuss how metastable free energies f�;�(d) change with �. The standardconstruction yields f�;�(d) in the form of a sum e�(d) + s�;�(d), where s�;�(d) is the freeenergy of \truncated" contour modelK 0d(Y ) [see [BKU 1996], (5.13) and (5.6)] constructedfrom labeled contour model (8.48), which is under control by cluster expansions. As aresult, we have bounds of the form O� e�� + kTk+Pr�1i=1

 @T@�i

� on js�;�(d)j as well as onthe derivatives with respect to �. Hence, in view of Assumption (5), the leading behaviouris yielded by e�(d).13Recall that, up to now, the state h�id� is de�ned only in terms of the contour representation [see(8.80), (8.79), and (8.48)], and the only proven connection with a state of original quantum model is theequality (8.82).



122 8. EFFECTIVE POTENTIAL DUE TO QUANTUM FLUCTUATIONSStarting thus from a given potential �� with Q� = fd 2 D; Re f�;�(d) = f�0 g, one caneasily add to �� a suitable \external �eld" that favours a chosen d 2 Q�. For example,one can take ��;�A (n) = ��A(n) + ��dA(n)with �dA de�ned by taking �dA(n) = 0 for nA = dA and �dA(n) = 1 otherwise.14 Now, since@e�;�(d)@� is bounded from below by a positive constant (while @e�;�(d0)@� = 0 for d0 6= d), forany � > 0 the only stable phase is d, Re f�;�;�(d) = f�;�;�0 � mind02D Re f�;�;�(d0), and, inthe same time, Re f�;�;�(d0) > f�;�;�0 for d0 6= d. Thus, Q�;� = fdg and h�id�;�;� = h�i per�;�;�.This state is thermodynamically stable | when adding any small perturbation, metastablefree energies will change only a little and that one corresponding to the state d will still bethe only one attaining the minimum. The fact that in the limit of vanishing perturbationwe recover h�id�;�;�, as well as the fact thatlim�!0+h�i per�;�;� � lim�!0+h�id�;�;� = h�id�;�;follows by inspecting the contour representations of the corresponding expectations andobserving that it can be expressed in terms of converging cluster expansions whose termsdepend smoothly on � as well as on the additional perturbation.To prove, �nally, the claim b) of Theorem 3.6, it su�ces to show that it is valid forh�i per�;�;� = h�id�;�;� for every � > 0. Abbreviating h�i per�;�;� = h�i per and H�;�; per� = H per� , we�rst notice that the expectation value of the projector onto the con�guration d on SuppK,P dSuppK + jdSuppKihdSuppK j , is close to 1, since its complement h(1l � P dSuppK)i per =h(1l�P dSuppK)id is related to the presence of a contour intersecting or surrounding SuppK(loops intersecting SuppK�f0g are considered here as part of quantum contours), whoseweight is small. More precisely, for any � > 0 we haveh(1l� P dSuppK)i per 6 �jSuppKj;whenever kTk is small enough and � large enough. Furthermore,hKi per� = 1Z per� hTr�P dSuppKKP dSuppK e��H per� �++Tr�(1l� P dSuppK)KP dSuppK e��H per� �+Tr�K(1l� P dSuppK) e��H per� �i (8.83)andTr�P dSuppKKP dSuppK e��H per� � = hd�jK jd�iTr�P dSuppK e��H per� �= hd�jK jd�i�Tr� e��H per� �� Tr�(1l� P dSuppK) e��H per� ��;(8.84)so that we have��hKi per� � hd�jK jd�i�� 66 ��hd�jK jd�i��h(1l�P dSuppK)i per� +��h(1l�P dSuppK)KP dSuppKi per� ��+��hK(1l�P dSuppK)i per� ��:(8.85)14Actually, we can restrict �dA only to a particular type of sets A | for example all hypercubes of sideR.



2. GENERAL SYSTEM 123The mapping (K;K 0) 7! hKyK 0i per� , with any two local operators K;K 0, is a scalar prod-uct; therefore the Schwarz inequality yields��hKi per� � hd�jK jd�i�� 6 ��hd�jK jd�i��h(1l� P dSuppK)i per�+ �h(1l� P dSuppK)i per� � 12��hP dSuppKKyKP dSuppKi per� � 12 + �hKyKi per� � 12�6 kKkhh(1l� P dSuppK)i per� + 2�h(1l� P dSuppK)i per� �1=2i 6 kKkjSuppKj(� + 2� 12 ):(8.86)The proof of the remaining Theorem 3.7 is a standard application of the implicitfunction theorem. Thus, for example, the point ��0 of maximal coexistence, Re f�;��0(d) =Re f�;��0(d0) for every pair d; d0 2 D, can be viewed as the solution of the vector equationf(��0) = 0, with f(�) = (Re f�;�(di) � Re f�;�(dr))r�1i=1 . Now, f = e + s, e(�) = (e�(di) �e�(dr))r�1i=1 , s(�) = (Re s�;�(di) � Re s�;�(dr))r�1i=1 , with ksk as well as 

 @s@�

 bounded bya small constant once kTk +Pr�1i=1


 @T@�i


 is su�ciently small � is su�ciently large. Theexistence of a unique solution ��0 2 U then follows once we notice the existence of thesolution �0 2 U of the equation e(�0) = 0 (equivalent with e�0(d) = e�0(d0), d; d0 2 D)and the fact that the mappingT : �! A�1� @e@� ���=�0(�� �0)� f(�)�with A�1 the matrix inverse to � @e@��, is a contraction. To this end it is enough just torecall Assumption 5 and the bounds on s�;�(d), d 2 D, and its derivatives.
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CHAPTER 9Concluding remarksAt the end of his talk in a conference in Marseille (July 1998), Roman Koteck�y de-scribed the last step of our method that shows the stabilization e�ect of quantum per-turbations (the e�ective interactions, Chapter 8) as to \harvest phase diagrams". Theexpression is pleasant, and I will often refer to it in this conclusion.To harvest represents quite a lot of work, but a walk along �elds of mature cerealscosts little pain, and brings nice illustration of harvesting tools. So let us have a look.Attractive spin-1 Hubbard model. Here quantum particles are fermions or hard-core bosons, and can be in three di�erent states. With well chosen chemical potential,the classical ground states have 0 or 3 particles at each site, and there is a gap for allexcitations.An e�ective interaction of strength t2=U should stabilize chessboard phases. There isno quantum instability, because the passage from a classical ground state to another onerequires the move of 3 particles, hence a factor t3=U2.This could be generalized to attractive spin-S Hubbard models. When S = 2, chess-board phases (0,5) are expected. Moreover, a phase with one particle on each site of asublattice, and four particles on the sites of the other sublattice, should also be stabi-lized by the e�ective potential, for suitable chemical potential. For larger S, other similarphases could also appear.Incompressibility and zero susceptibility in the asymmetric Hubbard model.These properties have been conjectured in Chapter 4, see (4.10) and (4.11). Adapting theideas of [BKU 1997], the di�erence between the density in the Gibbs state and that ofthe classical ground state, should be related to the presence of a winding contour inthe space-time picture. Since its length is of the order �, we should �nd a bound e�� .Compressibility coe�cient and susceptibility should be zero in the ground state of the(quantum) model. The magnetization as a function of the magnetic �eld is depicted inFig. 9.1 and 9.2; the density with respect to the chemical potential also has a plateau.
hm

0-101 t = 0 hm
0-101 t 6= 0 t2U !Figure 9.1. Magnetization as a function of the magnetic �eld, in the ground state ofthe asymmetric Hubbard model. Actually, it is reasonable to expect other plateaus ofwidth t4=U3 and smaller, by analogy with the Falicov-Kimball model (see [GM 1996]);rather than a continuous curve, a devil's staircase structure could appear.This should remain true in the standard Hubbard model, for the same reason. However,the way to prove it remains obscure to me. 125
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hm

0-101 t = 0 hm
0-101 t 6= 0Figure 9.2. Magnetization as a function of the magnetic �eld in the asymmetric Hub-bard model, at low temperature (other quasi-plateaus are also expected when t 6= 0).Two-bands electronic system. We are interested in a physical system where thelow temperature physical behaviour is governed by the electrons of two di�erent bandsinteracting with Coulomb repulsion. The Hamiltonian isH = t X<x;y>;� cyx;�cy;� + t0 X<x;y>;� dyx;�dy;� + UXx cyx;"cx;"cyx;#cx;#� V Xx;�;�0 cyx;�cx;�dyx;�0dx;�0 � �Xx;� cyx;�cx;� � �0Xx;� dyx;�dx;�: (9.1)Operators cyx;�; cx;� create, annihilate electrons of spin � at site x, in the most externalband. Similarly dyx;�; dx;� create, annihilate holes in the interior band. This model rep-resents a situation where some electrons of the full �rst band have been excited to thesecond band. U is the repulsive Coulomb energy of electrons of the external band, and Vis the di�erence of Coulomb energy that an external electron feels when there is a hole onthe same site.We assume that only one hole may be present at a given site (i.e. hard-core repulsionbetween the holes) and since the distance between two external electrons, at a given site,is bigger than the distance between these electrons from the inner ones, we have U < V .We remark that when t0 = 0, U = 0, the model reduces to the original Falicov-Kimballmodel, where both holes and electrons have spins.When 2V � U = �2� � �0, �� 2 (0; V � U) and ��0 > 0 (it is possible to choose� = �0 if 2U < V ), the set G of low energy con�gurations contains all the con�gurationswhere the sites are either empty, or have a hole and two electrons of di�erent spins.Our results with the e�ective interaction almost apply and yield a nearest-neighbourinteraction leading to a chessboard phase. Almost, because the set D of dominant statesis in�nite (jDj = 2 � 2 12 j�j in a �nite volume �); indeed, each hole has indi�erently spin "or #. Our method should nevertheless adapt to this situation.Falicov-Kimball model with spin-12 electrons. This model was considered in[MN 1996] and is very similar to the previous one. The single site phase space is 
 =f0; 1; "; #; 1"; 1#; "#; 3g, where \1" means the presence of an ion. The formal Hamiltonianis H = �t0 X<x;y>ayxay � t X<x;y>�2f";#g cyx�cy� + UXx wx(nx" + nx#) + V Xx nx"nx#with ayx, resp. cyx�, the creation operator for atoms, resp. electrons. Here wx = ayxay andnx� = cyx�cx�. The range of parameters would bet0 � t� U; V:



9. CONCLUDING REMARKS 127If the chemical potentials are chosen such that the classical ground states have eitherone isolated ion, or two electrons at each site, the harvest should be easy. An e�ectiveinteraction selecting the chessboard phases would appear.More di�cult is the situation where the classical ground states have exactly one particleat each site (the degeneracy is 3j�j). Suppose U < V . A nearest-neighbour e�ectiveinteraction appears, that attributes energy �t2=U to pairs (1; ") and (1; #), �t2=V topairs ("; #), and zero otherwise. It does not remove totally the degeneracy, since theground states are now all con�gurations where the ions occupy a sublattice, while thesites of the other sublattice have an electron with spin " or #. The degeneracy is now2 � 2 12 j�j.Fourth order terms in the e�ective interaction would remove this degeneracy, but thereis \quantum instability": two electrons at distance 2 can permute at a cost t4=U3. Whatwe expect however, is that for intermediate temperatures, such that� t2U � 1 and � t4U3 � 1;ions are ordered, while electrons are in a phase that is similar to a high temperature phasefor one sublattice. The corresponding Gibbs state has period 2 (translation invariance isbroken), but is still rotation invariant.Lattice Helium model. The physical system that we consider here consists in a gasof Helium atoms in porous media. Helium has two isotopic forms: 3He with two protonsand one neutron, and 4He with two protons and two neutrons. The �rst atom behavesas a fermion, while the second one is a boson. With ayx being the creation operator of anatom 4He at site x, and cyx the counterpart for 3He, and setting wx = ayxax and nx = cyxcx,the formal Hamiltonian takes the formH = �t0 X<x;y>ayxay � t X<x;y> cyxcy + UXx wxnx + V Xx (wx)2 � �0Xx wx � �Xx nx:A funny observation is that we obtain known models by taking di�erent limits of theHelium model.� If V ! 1 with �0 scaled so that �0=V is an odd integer, there are n0 or n0 + 1bosons at each site (n0 depends on �0) and we obtain a model with fermions andhard-core bosons. If moreover t0 ! 0, the model is the Falicov-Kimball one.� Still with V ! 1 and �0=V an odd integer, but now with t ! 0, we obtain aFalicov-Kimball model where quantum particles are hard-core bosons.� In the absence of interactions between bosons and fermions, that is, when U ! 0,this is the Bose-Hubbard model.There is certainly a lot to harvest in this model, and in extensions of this model byintroducing spins, longer-range hoppings or interactions, : : :Quantum Bricmont-Slawny theory. States chosen by thermal 
uctuations arestable with respect to other thermal 
uctuations [BS 1989], and they should be also stablewhen adding a very small quantum interaction T (kTk � e�� ). It would be interestingto prove this, but it looks desperately di�cult. If this would be possible, an applicationshould be the 3D Bose-Hubbard model with nearest-neighbour and next-nearest-neighbourinteractions, at quarter integer �lling, where we expect that thermal 
uctuations favourdi�erent phases than quantum 
uctuations.



128 9. CONCLUDING REMARKSThis walk through pleasant models where our theory applies sometimes totally, some-times only as intuitive guide, should not bring a wrong impression about this work. Ouraim was not to develop tools for getting results on special models, but rather to bring amodest contribution | indeed extremely modest, but maybe non-zero | to the questionof phase transitions in quantum systems.We have considered a rather large class of quantum lattice models; this made thetheory technically heavy, but had an important advantage: this allowed to identify themechanisms at work in these quantum systems, that are more than mathematical curiosi-ties valid for peculiar models.Let us summarize in two sentences the results described in this thesis.� Small quantum 
uctuations do not destroy the stability of phases of \nice" classicalmodels.� Quantum 
uctuations create an e�ective interaction; in some cases, other e�ectsare negligible and the quantum model behaves like a classical one.



Bibliography[AN 1994] M. Aizenman and B. Nachtergaele, Geometric aspects of quantum spin states, Commun. Math.Phys. 164, 17{63 (1994)[BCF 1997] C. Borgs, J. T. Chayes and J. Fr�ohlich, Dobrushin states in quantum lattice systems, Commun.Math. Phys. 189, 591{ (1997)[BI 1989] C. Borgs and J. Z. Imbrie, A uni�ed approach to phase diagrams in �eld theory and StatisticalMechanics, Commun. Math. Phys. 123, 305{328 (1989)[BJK 1996] C. Borgs, J. J�edrzejewski and R. Koteck�y, The staggered charge-order phase of the extendedHubbard model in the atomic limit, J. Phys. A 29, 733{747 (1996)[BK 1990] C. Borgs and R. Koteck�y, A rigorous theory of �nite-size scaling at �rst-order phase transitions,J. Stat. Phys. 61, 79{119 (1990)[BK 1994] C. Borgs and R. Koteck�y, Surface induced �nite size e�ects for �rst order phase transitions, J.Stat. Phys. 79, 43{115 (1994)[BKU 1996] C. Borgs, R. Koteck�y and D. Ueltschi, Low temperature phase diagrams for quantum pertur-bations of classical spin systems, Commun. Math. Phys. 181, 409{446 (1996)[BKU 1997] C. Borgs, R. Koteck�y and D. Ueltschi, Incompressible phase in lattice systems of interactingbosons, unpublished, available at http://dpwww.ep
.ch/instituts/ipt/publications.html (1997)[BR 1981] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics II,Texts and Monographs in Physics, Springer-Verlag (1981)[Bri 1995] J. Bricmont, Science of Chaos, or Chaos in Science?, Physicalia Magazine 17, 159{208 (1995)[BL 1984] J. Bricmont and J. L. Lebowitz, Book reviews: two from Sinai, J. Stat. Phys. 34, 651{656(1984)[BLP 1979] J. Bricmont, J. L. Lebowitz and C.-�E. P�ster, On the equivalence of boundary conditions, J.Stat. Phys. 21, 573{582 (1979)[BS 1989] J. Bricmont and J. Slawny, Phase transitions in systems with a �nite number of dominant groundstates, J. Stat. Phys. 54, 89{161 (1989)[Bry 1986] D. C. Brydges, A short course on cluster expansions, Proceeding of Les Houches, SessionXLIII, 129{183 (1986)[DFF 1996] N. Datta, R. Fern�andez and J. Fr�ohlich, Low-temperature phase diagrams of quantum latticesystems. I. Stability for quantum perturbations of classical systems with �nitely-many ground states,J. Stat. Phys. 84, 455{534 (1996)[DFFR 1996] N. Datta, R. Fern�andez, J. Fr�ohlich and L. Rey-Bellet, Low-temperature phase diagrams ofquantum lattice systems. II. Convergent perturbation expansions and stability in systems with in�nitedegeneracy, Helv. Phys. Acta 69, 752{820 (1996)[DMN 1998] N. Datta, A. Messager and B. Nachtergaele, Rigidity of interfaces in the Falicov-Kimballmodel, preprint, mp-arc 98-267 (1998)[Dob 1965] R. L. Dobrushin, Existence of a phase transition in the two-dimensional and three-dimensionalIsing models, Sov. Phys. Doklady 10, 111{113 (1965)[Dob 1968] R. L. Dobrushin, The problem of uniqueness of a Gibbsian random �eld and the problem ofphase transitions, Funct. Anal. Appl. 2, 302{312 (1968)[Dob 1994] R. L. Dobrushin, Estimates of semiinvariants for the Ising model at low temperatures, preprintESI 125, available at http://esi.ac.at (1994)[DLS 1978] F. J. Dyson, E. H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropicand nonisotropic interactions, J. Stat. Phys. 18, 335{383 (1978)129



130 BIBLIOGRAPHY[EFS 1993] A. C. D. van Enter, R. Fern�andez and A. D. Sokal, Regularity properties and pathologies ofposition-space renormalization-group transformations: scope and limitations of Gibbsian theory, J.Stat. Phys. 72, 879{1167 (1993)[FFG 1998] R. Fern�andez, P. A. Ferrari and N. L. Garcia, Measures on contour, polymer or animal models.A probabilistic approach, preprint (1998)[FWGF 1989] M. P. A. Fisher, P. B. Weichman, G. Grinstein and D. S. Fisher, Boson localization and thesuper
uid-insulator transition, Phys. Rev. B 40, 546{570 (1989)[FL 1978] J. Fr�ohlich and E. H. Lieb, Phase transitions in anisotropic lattice spin systems, Commun.Math. Phys. 60, 233{267 (1978)[FR 1996] J. Fr�ohlich and L. Rey-Bellet, Low-temperature phase diagrams of quantum lattice systems. III.Examples, Helv. Phys. Acta 69, 821{849 (1996)[Geo 1988] H.-O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics,Berlin-New York (1988)[Gin 1968] J. Ginibre, On the asymptotic exactness of the Bogoliubov approximation for many boson sys-tems, Commun. Math. Phys. 8, 26{51 (1968)[Gin 1969] J. Ginibre, Existence of phase transitions for quantum lattice systems, Commun. Math. Phys.14, 205{234 (1969)[Gri 1964] R. B. Gri�ths, Peierls' proof of spontaneous magnetization of a two-dimensional Ising ferro-magnet, Phys. Rev. A 136, 437{439 (1964)[GJL 1992] Ch. Gruber, J. J�edrzejewski and P. Lemberger, Ground states of the spinless Falicov-Kimballmodel II, J. Stat. Phys. 76, 913{938 (1992)[GKU 1998] Ch. Gruber, R. Koteck�y and D. Ueltschi, Planar and lamellar phases in Hubbard models, inpreparation[GK 1971] Ch. Gruber and H. Kunz, General properties of polymer systems, Commun. Math. Phys. 22,133{161 (1971)[GM 1996] Ch. Gruber and N. Macris, The Falicov-Kimball model: a review of exact results and extensions,Helv. Phys. Acta 69, 850{907 (1996)[GS 1988] Ch. Gruber and A. S�ut}o, Phase diagrams of lattice systems with residual entropy, J. Stat. Phys.52, 113{142 (1988)[Hei 1974] O. J. Heilmann, The use of re
ection as symmetry operation in connection with Peierls' argu-ment, Commun. Math. Phys. 36, 91{114 (1974)[HKZ 1988] P. Holick�y, R. Koteck�y and M. Zahradn��k, Rigid interfaces for lattice models at low tempera-tures, J. Stat. Phys. 50, 755{812 (1988)[HZ 1998] P. Holick�y and M. Zahradn��k, Strati�ed low temperature phases of strati�ed spin models: ageneral Pirogov-Sinai approach, preprint (1998)[Ken 1985] T. Kennedy, Long range order in the anisotropic quantum ferromagnetic Heisenberg model,Commun. Math. Phys. 100, 447{462 (1985)[Ken 1991] T. Kennedy, Ornstein-Zernike decay in the ground state of the quantum Ising model in a strongtransverse �eld, Commun. Math. Phys. 137, 599{615 (1991)[Ken 1994] T. Kennedy, Some rigorous results on the ground states of the Falicov-Kimball model, Rev.Math. Phys. 6, 901{ (1994)[KL 1986] T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long rangeorder, Physica A 138, 320{358 (1986)[KN 1994{] T. Kennedy and B. Nachtergaele, Heisenberg model home page,http://tfdec1.fys.kuleuven.ac.be/�pim/qs.html (1994{)[Kot 1994] R. Koteck�y, Geometric representation of lattice models and large volume asymptotics, in Prob-ability and Phase Transitions, G. Grimmet ed., Kluwer, 153{ (1994)[Kot 1995] R. Koteck�y, Phase transitions of lattice models, Rennes lectures, available athttp://www.cts.cuni.cz/�kotecky/ (1995)[KP 1984] R. Koteck�y and D. Preiss, An inductive approach to Pirogov-Sinai theory, Suppl. ai rendicontidel circolo matem. di Palermo, ser. II 3, 161{164 (1984)[KP 1986] R. Koteck�y and D. Preiss, Cluster expansion for abstract polymer models, Commun. Math.Phys. 103, 491{498 (1986)[KU 1998] R. Koteck�y and D. Ueltschi, E�ective interactions due to quantum 
uctuations, preprint,available at http://dpwww.ep
.ch/instituts/ipt/publications.html (1998)



BIBLIOGRAPHY 131[Kunz 1971] H. Kunz, Statistical Mechanical Treatment of the Polymer Model, Thesis, �Ecole Polytech-nique, Lausanne (1971)[Kunz 1978] H. Kunz, Analyticity and clustering properties of unbounded spin systems, Commun. Math.Phys. 59, 53{69 (1978)[Lan 1973] O. E. Lanford III, Entropy and equilibrium states in Classical Statistical Mechanics, in Statis-tical Mechanics and mathematical problems, A. Lenard ed., Lecture Notes in Physics 20, Springer-Verlag, 1{113 (1973)[LR 1969] O. E. Lanford III and D. Ruelle, Observables at in�nity and states with short range correlationsin Statistical Mechanics, Commun. Math. Phys. 13, 194{215 (1969)[Leb 1993] J. L. Lebowitz,Macroscopic laws, microscopic dynamics, time's arrow and Boltzmann's entropy,Physica A 194, 1{27 (1993)[LM1 1994] J. L. Lebowitz and N. Macris, Long range order in the Falicov-Kimball model: extension ofKennedy-Lieb theorem, Rev. Math. Phys. 6, 927{946 (1994)[LM2 1994] J. L. Lebowitz and N. Macris, Low-temperature phases of itinerant fermions interacting withclassical phonons: the static Holstein model, J. Stat. Phys. 76, 91{123 (1994)[LM 1997] J. L. Lebowitz and A. E. Mazel, On the uniqueness of Gibbs states in the Pirogov-Sinai theory,preprint, cond-mat/9703084 (1997)[LM 1993] P. Lemberger and N. Macris, Long-range order in a simple model of interacting fermions, Lett.Math. Phys. 28, 295{305 (1993)[LPS 1994] J. T. Lewis, C.-�E. P�ster and W. G. Sullivan, The equivalence of ensembles for lattice systems:some examples and a counter-example, J. Stat. Phys. 77, 397{419 (1994)[Lieb 1993] E. H. Lieb, The Hubbard model: some rigorous results and open problems, in Advances inDynamical Systems and Quantum Physics, World Scienti�c (1993)[LLM 1993] E. H. Lieb, M. Loss and R. J. McCann, Uniform density theorem for the Hubbard model, J.Math. Phys. 34, 891{898 (1993)[MN 1996] N. Macris and B. Nachtergaele, On the 
ux phase conjecture at half-�lling: an improved proof,J. Stat. Phys. 85, 745{761 (1996)[MR 1990] Ph. A. Martin and F. Rothen, Probl�emes �a N-corps et Champs Quantiques, Presses Polytech-niques et Universitaires Romandes (1990)[MS 1996] A. E. Mazel and Y. M. Suhov, Ground states of a boson quantum lattice model, Sinai's MoscowSeminar on Dynamical Systems, 185{226 (1996)[MM 1996] A. Messager and S. Miracle-Sol�e, Low temperature states in the Falicov-Kimball model, Rev.Math. Phys. 8, 271{299 (1996)[Mi�e 1993] J. Mi�ekisz, The global minimum of energy is not always a sum of local minima | a note onfrustration, J. Stat. Phys. 71, 425{434 (1993)[NOZ 1998] F. Nardi, E. Olivieri and M. Zahradn��k, private communication[Park 1988] Y. M. Park, Extension of Pirogov-Sinai theory of phase transitions to in�nite range interactionsI. Cluster expansion, Commun. Math. Phys. 114, 187{218; II. Phase diagram, 219{241 (1988)[PY 1995] Y. M. Park and H. J. Yoo, Uniqueness and clustering properties of Gibbs states for classicaland quantum unbounded spin systems, J. Stat. Phys. 80, 223{271 (1995)[Pei 1936] R. Peierls, On the Ising model of ferromagnetism, Proceedings of the Cambridge PhilosophicalSociety 32, 477{481 (1936)[Pen 1967] O. Penrose, Convergence of fugacity expansions for classical systems, in Statistical Mechanics,Foundations and Applications, T. A. Bak ed., W. A. Benjamin, 101{107 (1967)[PO 1956] O. Penrose and L. Onsager, Bose-Einstein condensation and liquid Helium, Phys. Rev. 104,576{584 (1956)[P� 1991] C.-�E. P�ster, Large deviations and phase separation in the two-dimensional Ising model, Helv.Phys. Acta 64, 953{1054 (1991)[Pir 1978] S. A. Pirogov, Phase diagrams of quantum lattice systems, Soviet Math. Dokl. 19, 1096{1099(1978)[PS 1975] S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems, Theoretical andMathematical Physics 25, 1185{1192 (1975); 26, 39{49 (1976)[Rob 1969] D. W. Robinson, A proof of the existence of phase transitions in the anisotropic Heisenbergmodel, Commun. Math. Phys. 14, 195{204 (1969)[Sim 1993] B. Simon, The Statistical Mechanics of Lattice Gases, Princeton University Press (1993)[Sin 1982] Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results, Pergamon Press (1982)



132 BIBLIOGRAPHY[Sla 1987] J. Slawny, Low temperatures properties of classical lattice systems: phase transitions and phasediagrams, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz eds,Academic Press, 127{205 (1987)[Uel 1998] D. Ueltschi, Analyticity in Hubbard models, in preparation[Vel 1997] Y. Velenik, Phase Separation as a Large Deviations Problem: a Microscopic Derivation ofSurface Thermodynamics for some 2D Spin Systems, Thesis, �Ecole Polytechnique, Lausanne (1997)[Yang 1962] C. N. Yang, Concept of o�-diagonal long-range order and the quantum phases of liquid Heand of superconductors, Rev. Mod. Phys. 34, 694{704 (1962)[Zah 1984] M. Zahradn��k, An alternate version of Pirogov-Sinai theory, Commun. Math. Phys. 93, 559{581 (1984)[Zah 1996] M. Zahradn��k, A short course on the Pirogov-Sinai theory, Rome lectures (1996)[Zah 1998] M. Zahradn��k, Contour methods and Pirogov-Sinai theory for continuous spin models, preprint(1996)
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