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Résumé

Une classe de systéemes de Physique Statistique Quantique sur réseau est étudiée
mathématiquement de maniére rigoureuse. Les modeles que nous considérons ont un
hamiltonien composé de deux termes : H =V + T'; typiquement, V représente une inter-
action entre les particules, et T' est ’énergie cinétique. Nous supposons que pour une base
judicieusement choisie de I’espace de Hilbert, V' est un opérateur diagonal, pouvant étre
représenté par une interaction classique. T' n’est pas nécessairement diagonal dans cette
base; sa norme est petite devant V.

Dans la premiére partie de ce travail, nous admettons que V satisfait une “condition
de Peierls”; en gros, cela signifie que les excitations de V' sont séparées par un gap. A Paide
d’une extension de la théorie de Pirogov-Sinai, nous pouvons montrer que le diagramme de
phases de V + T, & basse température, est proche de celui de V' a température nulle. Cela,
signifie que ce dernier est stable par rapport aux fluctuations quantiques et thermiques.
Certaines propriétés des phases & basse température peuvent alors étre établies, concernant
la valeur des parametres d’ordre et la décroissance des fonctions de corrélation.

La deuxiéme partie de ce travail consiste & mieux comprendre les effets quantiques.
Nous montrons que les fluctuations quantiques créent une nouvelle “interaction effective”
qui s’ajoute a Pinteraction V. Une formule est proposée, qui permet de calculer explicite-
ment cette interaction pour des modeles précis. Sous certaines hypothéses — notamment
une condition de Peierls pour cette nouvelle interaction, et une condition assurant que les
autres effets quantiques sont faibles — nous prouvons que le diagramme de phases a basse
température est proche de celui, & température nulle, de cette nouvelle interaction. Dans
ce cas aussi, certaines caractéristiques des phases peuvent étre précisées.

Ces résultats sont illustrés en considérant deux modeles simples. Un modele de
Hubbard modifié, “asymétrique”, dans lequel les électrons de spin “up” ont une masse
plus faible que ceux de spin “down”. Les déplacements des électrons, combinés & la
répulsion coulombienne, sont responsables d’une interaction antiferromagnétique effective.
Les phases & basse température brisent une symétrie de I’hamiltonien ('invariance sous
les translations). Le second modele est celui de Bose-Hubbard, qui décrit un systéme de
bosons sur réseau, avec interactions locales et entre proches voisins. Lorsque les interac-
tions sont fortes, le caractére isolant des phases & basse température peut étre démontré.



Abstract

A class of lattice systems of Quantum Statistical Physics is mathematically and rig-
orously studied. The models we are considering have Hamiltonian formed by two terms:
H =V + T, typically, V represents an interaction between the particles and T is the
kinetic energy. We suppose that, in a judiciously chosen basis of the Hilbert space, V is a
diagonal operator that can be represented by a classical interaction. 7" is not necessarily
diagonal in this basis; its norm is small compared to that of V.

In the first part of this work, we assume that V satisfies a “Peierls condition”; roughly
speaking, this means that excitations of V' are separated by a gap. With the help of
an extension of the Pirogov-Sinai theory, we can show that the low temperature phase
diagram of V' + T is close to that of V at temperature zero. This means that the latter
is stable with respect to quantum and thermal fluctuations. Some properties of the low
temperature phases can be established, concerning values of order parameters and decay
of correlation functions.

The second part of this work consists in better understanding the quantum effects.
We show that quantum fluctuations create a new “effective interaction”, which adds to
the interaction V. A formula is proposed, allowing to compute explicitely this interaction
in concrete models. Under some assumptions — in particular, a Peierls condition for this
new interaction, and a condition ensuring that other quantum effects are small — we
prove that the low temperature phase diagram is close to that of this new interaction at
temperature zero. In this case also, several features of the phases can be precised.

These results are illustrated by considering two simple models. A modified, “asymmet-
ric” Hubbard model in which spin “up” electrons have a smaller mass than spin “down”
electrons. The moves of electrons, combined with Coulomb repulsion, is responsible for
an effective antiferromagnetic interaction. Low temperature phases break a symmetry
of the Hamiltonian, namely the invariance under translations. The second model is the
Bose-Hubbard one, which describes a system of bosons on a lattice, with local and neigh-
bour interactions. When the interactions are strong, the insulating behaviour of the low
temperature phases can be proven.
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CHAPTER 0

Prolog

La légende... C’est ce qui nous reste
des vérités d’hier, quand elles passent
par le crible des vérités du jourd’hui...
Francois Bourgeon,

Le Dernier Chant des Malaterre

— NON ! Mais enfin, vous voulez décrire deuz phases, aux propriétés physiques différentes,
avec les mémes équations 7 Regardez-la, notre fonction de partition

[il désigne le tableau noir, sur lequel la main nerveuse de Max Born avait tracé

7 — o NF/KT

:/ dql.../ que_U(QI,---,qN)/k:T ]
Vv \%

Vous voudriez que pour une valeur de la température, on ait un gaz, et pour une
autre valeur de la température, méme proche, on ait un liquide ? Et au point
de transition, que tous les deuz découlent de cette équation ? Si votre pere vous
entendait... vous étes complétement dépourvu de sa clairvoyance !

Bouillonnant, la moustache agressive, Arnold Sommerfeld parvenait & se faire entendre
malgré le brouhaha di & de nombreuses autres discussions, tout aussi animées. Sa réplique
laissa van der Waals Jr sans voix. Il n’est pas facile de se créer une personnalité scientifique
lorsque toute réflexion s’accompagne d’une pensée & ce pere prestigieux, et Sommerfeld,
sans doute involontairement, avait touché un point douloureux. Mal & l'aise, van der
Waals se tourna en direction de Sommerfeld, et je ne I’eus pas entendu si je ne fus assis a
proximité.

— Monsieur, je me permets d’insister, il n’existe pas deux descriptions possibles pour
un systeme de physique statistique; et 'intégrale contient toutes les positions pos-
sibles des particules du systéme. Celles qui correspondent a un gaz, et celles qui
correspondent & un liquide.

Je ne sais pas si Sommerfeld comprit les mots de van der Waals. Les débats étaient
vifs. Afin de mieux saisir le sujet de la discussion, je revins & la fonction de partition sur
le tableau noir. Celui-ci était caché par un groupe dans lequel je reconnus notre orateur,
Max Born, qui détaillait certains passages de cette théorie de Mayer qu’il venait de nous
expliquer. Un de ses auditeurs, les cheveux noirs et les lévres proéminentes, contrastait
singulierement avec le visage fin au front dégarni, et les cheveux grisonnants, de Born.
C’était George Uhlenbeck, qui justement prenait la parole :

— D’ot1 vient la grande similitude des propriétés macroscopiques 7 Par exemple, toutes
les substances apparaissent dans des phases solide, liquide ou gaz. Cela indique, je

1
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crois, que ces propriétés ne dépendent que de certaines caractéristiques qualitatives
des forces interatomiques.

Cette session matinale de la conférence a 'occasion du centenaire de Johannes van
der Waals, commencait & me lasser. Il était certes distrayant d’assister a ces empoignades
intellectuelles — qui par ailleurs menacaient de ne pas en rester la — mais tout cela me
dépassait, et je peinais a saisir les subtilités de cette controverse sur les transitions de
phases.

La fenétre laissait voir des nuages au-dessus d’Amsterdam, en ce jour de novembre
1937. Mon voisin, moins réveur, prenait part a la discussion :

— Une fonction de partition, ce sont des intégrales de fonctions continues. Comment
obtenir les discontinuités associées aux transitions de phases ?

Revenant & 1’assemblée, je vis Hendrik Kramers, le chairman, qui rajustait ses lunettes; et
d’une voix autoritaire qui contredisait 1’aspect juvénile de son visage,

— Mes chers collegues, s’il vous plait, un peu de retenue. Arnold, s’il vous plait.
L’heure du repas approche. Puisqu’aucun consensus ne se dégage, je propose de
voter. Que ceux qui soutiennent l'idée que la fonction de partition contient la
possibilité d’une transition de phases, levent la main.

Je regardai autour de moi, quelque peu apeuré. Un vote sur un sujet scientifique, quelle
idée incongrue ! Et surtout, quelle position devais-je prendre 7 J’apercus Sommerfeld
croisant fermement les bras, alors que Born, Uhlenbeck et van der Waals levaient la. main.
De nombreuses personnes soutenaient le méme point de vue. Puis le chairman demanda
a ceux jugeant qu'une et une seule phase pouvait étre décrite par la méme équation, de
se manifester. Sommerfeld ne fut pas le seul & exprimer cet avis, et un nombre semblable
de mains se leverent. Kramers, dépité, décida que ce vote n’était pas concluant, et refusa
d’en faire un acte officiel du colloque.

Références :

1. M. Born, The statistical mechanics of condensing systems, Physica IV, 1034-1044
(1937)

2. M. Born et K. Fuchs, The statistical mechanics of condensing systems, Proc. Roy.

Soc. A166, 391414 (1938)

B. Kahn et G. Uhlenbeck, On the theory of condensation, Physica 5, 399-416 (1938)

4. M. Dresden, Kramers’s contributions to Statistical Mechanics, Physics Today, Sep-
tember 1988, 2633

5. G. E. Uhlenbeck, Summarizing remarks, in Statistical Mechanics, Foundations and
Applications, T. A. Bak ed., W. A. Benjamin, 574-582 (1967)

6. MacTutor, http://www-history.mcs.st-and.ac.uk /history/
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The legend... This is what remains
from yesterday truths, when they go
through the riddle of today truths...

Francois Bourgeon,
Le Dernier Chant des Malaterre

— NO! How dare you describe two phases, with different physical features, with the
same equations? Look at it, our partition function

[he pointed towards the blackboard, on which Max Born’s nervous hand had drawn
7 — o~ NF/KT

:/ dql.../ que_U(QI,---,qN)/k:T ]
14 \%

You’d like that for a temperature value we get a gas, and for another temperature
value, even close, we get a liquid? And at the transition point, that both of them
result from this equation? If your father could hear you... you're totally devoid of
his cleverness!

Boiling, with agressive moustache, Arnold Sommerfeld succeeded in making himself
heard despite the hubbub due to numerous animated discussions. His respons let van der
Waals Jr speechless. It is not easy to create oneself a scientific personality, when each
reflection comes with a thought to his pretigious father, and Sommerfeld, doubtless unin-
tentionally, had touched a sensible point. Ill at ease, van der Waals turned to Sommerfeld.
I would not have heard him if T had not been seated nearby.

— Sir, allow me to insist, there aren’t two possible descriptions for a system of sta-
tistical physics, and the integral contains all possible positions of particles of the
system. Those that correspond to a gas, and those that correspond to a liquid.

I do not know whether Sommerfeld understood the words of van der Waals. The
debates were spirited. In order to catch better the subject of the discussion, I looked
again at the partition function on the blackboard. But it was hidden by some people
among whom I recognised our speaker, Max Born, who was explaining in detail some
parts of Mayer’s theory that he had just been talking about. One of his listener, with
black hair and prominent lips, singularly contrasted with the fine and bald foreheaded
face, and the grey hair of Born. This was George Uhlenbeck, who started to speak:

— Where does the great similarity of the macroscopic properties come from? For
example, all substances appear in solid, liquid, or gas phases. This means, I be-
lieve, that these properties only depend on certain qualitative characteristics of
interatomic forces.

This morning session of the conference of Johannes van der Waals’ centenary was
boring me. It was certainly piece of entertainment to assist to such intellectual fights —
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which moreover threatened to go further — but all of this was well beyond me and I was
smuggling to grasp the subtleties of this controversy about the phase transitions.

Clouds above Amsterdam could be seen through the window, on this November day
of 1937. My neighbour, less daydreamer, was taking part in the discussion:

— Partition functions, they are integrals of continuous functions. How to obtain the
discontinuities associated to phase transitions?

Coming back to the meeting, I saw Hendrik Kramers, the chairman, readjusting his glasses;
and with an autoritative voice, that contradicted his youthful face,

— My dear collegues, please, have some restraint. Arnold, please. It will soon be
lunch time. As no consensus is being drawn, I suggest to vote. Those who uphold
the idea that the partition function contains the possibility of a phase transition,
please lift up your hands.

I looked around me, somehow scared. A vote on a scientific subject, what a peculiar ideal
And moreover what position should I support? I noticed Sommerfeld crossing resolutely
his arms, while Born, Uhlenbeck and van der Waals were raising their hands. Numerous
people were approving the same point of view. Then the chairman requested to those that
reckon that one and only one phase could be described by the same equation, to express
themselves. Sommerfeld was not the only one to agree with this idea, and a similar number
of hands were uplifted. Kramers, destressed, decided that this vote was not conclusive,
and refused to make of it an official deed of the colloquium.

References: see page 2. The translation of this prolog was achieved by Anne-Lise Ueltschi; merci, petite

sceur !



CHAPTER 1

Introduction

1. Generalities

Many physical systems consist of particles in interaction, and share two characteristics:

e the particles are described by the rules of Quantum Mechanics;
e the number of particles is enormous.

Some phenomena are closely related to these systems, as for instance magnetization, long-
range order, superfluidity, superconductivity. Varying the thermodynamic parameters
may result in changing the properties of the phases. Sometimes the change is sudden,
there is phase transition.

A key role is played by the number of particles. First, it is a limitation to attempts of
solving explicitely the Schrodinger equation associated with interacting particles. Second,
a sufficient description of the system involves only a small number of relevant (macroscopic)
quantities — the system is governed by the laws of Thermodynamics.

Thermodynamics is at the same time a powerful tool that applies to a wide class of
systems, and a semi-phenomenological theory that requires a few inputs — for instance, a
state equation. We cannot content ourselves with this theory for several reasons. First, we
would like to derive the state equation. Second, the description provided by bare Quantum
Mechanics, although inconvenient, is correct and we have to check that it does not bring
predictions that contradict those of Thermodynamics.

A third motivation comes from the progress of Experimental Physics. Atomic scales
are now under observation, and natural questions are what are the electronic properties
of a given material, knowing its atomic structure. In particular, what are the mechanisms
favouring magnetism or superconductivity?

The link between the “true” microscopic description — here Quantum Mechanics —
and macroscopic observation — thermodynamic quantities — is the subject of Statistical
Physics. It provides recepies for the computation of thermodynamic potentials from the
basic laws. Actually, the creation of Statistical Physics was far from easy; strong resis-
tance arose from the scientific community. Its main figure, Ludwig Boltzmann, eventually
committed suicide, partly because of numerous misunderstandings met by his ideas. Two
main phenomena of Thermodynamics, namely irreversibility and phase transitions, seem
incompatible with a microscopic description. Newton equations are reversible, therefore a
classical gas should obey a reversible equation of motion? And the withstanding to phase
transitions was illustrated in the prolog.

It is now commonly accepted that phase transitions occur in the limit of infinite
systems, although this can be proven only in models quite far from reality. Irreversibility is
still a subject of debate; see Lebowitz [Leb 1993] and Bricmont [Bri 1995] for two excellent
discussions.
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Since it is in general mathematically not easy to obtain some information on the
macroscopic properties of a system, we have to look at caricatures. A very useful sim-
plification is to consider lattice models; many mathematical techniques exist that apply
only in this case. Going back to a physical justification for this assumption, we can invoke
applications to condensed matter systems. The lattice is due to a periodic arrangment of
(motionless) atoms, creating a periodic potential. There is a natural basis for the Hilbert
space of quantum particles (electrons) feeling such a potential, namely the one formed by
Wannier states. Each state is labelled by a site of the lattice, and represents a particle
that is localized around the site. With a few additional assumptions, we obtain a lattice
model.

Another class of models consists in spin systems. Here, a spin is attached at each
site of the lattice; the phase space is a tensorial product of local phase spaces, these
being Hilbert spaces for one spin. The standard spin model is the Heisenberg model,
with Hamiltonian involving nearest-neighbour interactions. When the Hamiltonian and
all interesting observables are diagonal operators, the model can be reformulated in the
context of Classical Statistical Mechanics.

2. Classical lattice models

More than modelization of a given physical system, classical lattice models are illus-
trations of different phenomena. The most famous and simplest one is the Ising model,
“describing” a system of spin % on a lattice. A configuration of spins is an assignment
of a value £1 to each site. The interaction between the spins is nearest-neighbour; more
precisely, each pair of neighbouring spins in opposite states [i.e. (+,—) or (—,+)] con-
tributes for an amount of energy of J, while pairs with identical spins have energy —J. At
high temperature, there is a unique phase, that has all the symmetries of the Hamiltonian
— in particular, it is invariant under the spin flips. The magnetization is zero. At low
temperature, however, there are two phases, one with positive magnetization, the other
with negative magnetization. These phases are not invariant under spin flips: there is
symmetry breaking. Qualitatively, the Ising model describes the behaviour of a magnet.

The proof of these properties was done by Peierls [Pei 1936] (see also [Dob 1965,
Gri 1964]) and is called now the “Peierls argument”. He introduced geometric concepts,
namely the “contours”. Retrospectively, these are natural notions in view of probability
theory: at high temperature, the spins are essentially independent random variables, and
a central limit theorem holds. At low temperature, the spins are strongly dependent, but
contours play the role of essentially independent random variables. For boundary condi-
tions “+7, respectively “—”, contours have low probability of occurrence and most of the
sites are in the state “+”, respectively “—7.

It is interesting to consider now the Ising model with an external magnetic field. When
it is positive, there is only one phase with positive magnetization; decreasing the magnetic
field, we obtain the “+” phase. The same can be done with a negative magnetic field, so as
to obtain the “—” phase. This describes a first-order (or discontinuous) phase transition.
The magnetization is a first derivative of the free energy of the system; we see here that
it has a discontinuity as a function of the magnetic field, when it is zero.

There exists a beautiful and general theory for first-order phase transitions in lattice
models, that is due to Pirogov and Sinai [PS 1975]. It relies on the Peierls argument,
but involves new ideas to treat the case where phases are not related by symmetry. It
provides a good description of the low temperature phases and of the low temperature



4. ABOUT THIS WORK 7

phase diagrams for a large class of models. Important notions are that of phase coexistence
and metastable free energy — both have physical as well as mathematical meaning.

3. Quantum lattice models

There is a curious conservation law between the classical and quantum cases, in Sta-
tistical Physics. Namely, the modelization process leading to a classical model has no
physical justification; for instance, why should Ising spins be only in the z-direction; and
why should they interact in their ferromagnetic way? However, given the model, the def-
inition of thermodynamic quantities finds a deep justification in probability theory. On
the other hand, basic quantum models are more natural — the Hubbard model, for in-
stance, consists in kinetic energy and Coulomb interaction. But the motivation behind
the definition of Gibbs states is not clear.

The study of quantum models is much harder than classical ones, and there is com-
paratively less results, for less models. The questions we are interested in are roughly the
same as for classical systems — namely, to understand which symmetries are broken at
low temperatures. An important — negative — result is the Mermin-Wagner theorem,
which states that continuous symmetries cannot be broken at one or two dimensions.

There are two rather general methods to prove the existence of phases with magnetiza-
tion or long-range order. One is the “reflection positivity” [DLS 1978, FL 1978], the other
is the Peierls argument applied to quantum models [Gin 1969, Rob 1969]. An important
advantage of the first one is the possibility to study breakings of continuous symmetries.
The second one is more robust to perturbations of the model; it also allows to define pure
states.

Beside of the results which enter these two classes, there are numerous contributions
where special properties of models are used, together with the imagination of their authors.

4. About this work

There are two aspects. The first one consists in the extension of the Pirogov-Sinai
theory to quantum models. In a collaboration with Christian Borgs and Roman Kotecky
[BKU 1996, BKU 1997], we showed that “nice” classical models possess low temperature
phases that are stable with respect to a quantum perturbation.! This amounts to say that
classical models may be correct approximations of the quantum reality. The proof consists
in an expansion with Duhamel formula (Dyson serie) mapping the quantum model onto
a classical model in one more (continuous) dimension. Then it is possible to introduce
contours and to use the ideas of Pirogov-Sinai theory. Notice that the quantum model
is mathematically very close to a classical one, but the concepts (in particular that of
metastability) are physically not so meaningful.

The second aspect is to focus on the “quantum fluctuations”, and to show that
they bring a new (classical) effective interaction between the particles. This allows to
study models where the classical part has degeneracies that are removed by the quan-
tum perturbation.? This work was done with Christian Gruber and Roman Kotecky
[KU 1998, GKU 1998]. It is possible to compute e.g. the nearest-neighbour antiferro-
magnetic interaction in the Hubbard model. Conditions are given in order that the low
temperature phases are decided by this effective potential. Notice that the Hubbard model

!Similar results were obtained at the same time by a group in Ziirich consisting in Nilanjana Datta,
Roberto Ferndndez and Jirg Frohlich [DFF 1996].

*Related results were previously obtained by the Ziirich group, the same persons and Luc Rey-Bellet
[DFFR 1996, FR 1996].
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does not satisfy one of the assumptions (there is “quantum instability”; it is related to the
rotational invariance of the spins). With this effective interaction, we make a small step
towards justifying classical models.

A natural question is about true quantum phenomena such as superfluidity and super-
conductivity. Our results bring some information, but these are negative results: in the
domain of applicability of our method, no off-diagonal long-range order may be present
(remark that in most of the situations, we have no mathematical statement to support this
affirmation). This knowledge is nevertheless useful, because, as noted in [DFF 1996]: “it
allows people hunting for quantum effects to rule out large regions of the phase diagram,
saving efforts and misunderstandings”.

Let us end this introduction by a description of the contents of this thesis.

After a brief heuristical discussion on the definition of macroscopic states in classical
systems, Chapter 2 introduces the necessary mathematical definitions.

The results proved in this thesis are written in Chapter 3. The first theorem claims the
analyticity of the free energy at high temperature — this result is not new, but is a nice
example of the use of cluster expansions. The second theorem is also about analyticity,
for all temperature, provided only local interactions are not small. The next section is
devoted to the stability of the properties of classical models with respect to the quantum
fluctuations (quantum Pirogov-Sinai theory). In the last section the effective potential is
introduced, and after a few assumptions, the stability of phases selected by the effective
interaction is stated.

The title of Chapter 4 is “Applications to Hubbard models”. Notice the plural of
“models”. Tt of course suggests that the standard Hubbard model is not included in
those we consider. Actually, we introduce first the “asymmetric” Hubbard model where
electrons of different spins do not have the same hopping. Low temperature phases present
chessboard structures; we observe however that when adding longer-range hopping, the
phases may be drastically different. Second we study the Bose-Hubbard model describing
bosons on a lattice.

The basic mathematical tool is cluster expansion, that we present in Chapter 5. At
the end of the chapter, we illustrate its usefulness with high temperature expansions.

Ideas and results of the Pirogov-Sinai theory are explained in Chapter 6. Ising and
Blume-Capel models are discussed, because they allow to introduce both the geometric
notions (“contours”) and the concept of metastable free energy. The results of this theory
are then stated in the framework of an abstract contour model, that will be directly used
in quantum systems.

Chapter 7 starts with a description of the Duhamel formula. It is then applied to
quantum models of Statistical Physics, in order to obtain a contour model where contours
have small activities.

The last Chapter 8 is devoted to the effective potential. The ideas are first presented
in the special case of the asymmetric Hubbard model, in a heuristical manner. Next the
general situation is considered, and efforts are paid in order to define suitable contours, and
finally to prove that their activities are sufficiently small in order to meet the requirements
of the Pirogov-Sinai theory.

Let us summarize the structure of this thesis with a diagram. If A and B are two
subjects, the notation A—B means that the proof of the result of B necessitates the tools
developped in A.
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high temperatures i -
gquantum Pirogov-Sinai theory

Results of
Chapter 3: local interactions

effective interactions

8: effective interactions

5: cluster expansions

\

6: Pirogov-Sinai theory

7: Duhamel representation

The diagram shows that the demonstration of the high temperature phase only requires
cluster expansions; the absence of phase transitions in systems with local interactions fol-
lows from cluster expansions and Duhamel reprentation; the Pirogov-Sinai theory, together
with the Duhamel representation of quantum models, lead to the statements of the quan-
tum Pirogov-Sinai theory; finally, the effective interactions due to quantum fluctuations
are consequences of all four chapters.
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CHAPTER 2

Mathematical modelization

1. Heuristical discussion (classical systems)

Statistical Physics describes systems consisting of a huge number of particles. Having
the microscopical description, how can we obtain the thermodynamics of the system? A
mathematical answer to this question is the canonical formalism, that we introduce in
Section 3. We can take it as a postulate, but it is a very crude one. So let us start with a
discussion of physical ideas concerning systems at equilibrium.

Since the number of the particles in the system is enormous, two obvious and funda-
mental remarks have to be done:

e the microscopic state is impossible to know,
e relevant quantities are macroscopic observables, i.e. those involving a huge number
of particles.

On the other hand, it is known from Thermodynamics that only a few numbers are neces-
sary to characterize a physical system. For instance, the thermodynamic state of a gas of
N particles in a volume V' is now specified by its temperature, even though the number of
degrees of freedom is about 10?3. “To be specified by its temperature” means that if we
measure the same physical quantity in two different systems with identical temperature
(and identical volume and number of particles), we find the same value, although they are
in two different microscopic states. Thermodynamics would be no Science without this
property of reproducibility of its experiments. Remark that the state of the system can
be thermodynamically specified by choosing other parameters, as for instance the energy.

Let us be more precise — although we keep vague in mathematical notions. Let
Q = QV be the phase space for a system of N particles. We suppose that there exists a
function E : @ — R (the energy observable). Let us denote by M the set of macroscopic
observables. For given energy E, let ©2(E) C Q be the set of microscopic states w such
that E(w) = E.

POSTULATE 1 (REDUCTION OF VARIABLES). There ezists Qyp(E) C Q(E) (the set
of typical states) on which any macroscopic observable M € M is constant; moreover, the
system is in a state of Qiyp(E), any time it is observed.

The last statement means that Q(F) \ Qyp(F) is a small set, and that its events are
so rare that they never really happen (and if they do, people would say there is an error,
and the repetition of the experiment would confirm their belief).

We need to introduce the temperature, since we want to discuss the canonical ensemble.
Any large system at equilibrium has a temperature, therefore there must exist a function
B : UpQiyp(E) — R such that B(w) is the inverse temperature of the system!; in the case
of a gas, 3 would be associated to the distribution of the kinetic energy of the particles. 3

'Note that the inverse temperature function is not defined on the whole of €, and is therefore not an
observable.

11
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is also constant on Qy,(£); this means that the temperature is a function of the energy.
Assuming it is invertible, it allows to define the set of typical states at inverse temperature
B, namely Qtyp(ﬂ) = Qtyp(E(ﬁ))'

Since we want to derive the macroscopic behaviour from the microscopic description,
we should now consider an element of €y, (/) and compute the values of the observables.
This is impossible in practice, already because the set €y,(5) is hard to specify! But
since any M € M is constant on Qy,(3), we have

M(w) = / dpu(w) M ()

for any w € Qyyp(B) and any probability measure ;o on € such that p(Qyp(8)) = 1. We
call such a measure a (-equilibrium measure; it describes the equilibrium phases at inverse
temperature (.

POSTULATE 2 (CANONICAL ENSEMBLE). Let A be the uniform measure on . Then
dp(w) = e #HW) d)\(w)//d)\(w') e AH(W)

is a (-equilibrium measure.

These two postulates are plausible for systems with a lot of particles, since the law
of large numbers plays a crucial role — we see here the intrinsic probabilistic nature of
statistical physics systems.

Similar ideas are discussed by Lebowitz [Leb 1993]. As for mathematical results to
support this discussion, there are considerations on the “triviality of Gibbs measures
with respect to the field of global observables” [LR 1969, Lan 1973], and equivalence of
microcanonical and canonical ensembles, see e.g. [LPS 1994]. All this holds for classical
systems; I prudently choose not to enter deep questions about quantum ones.

2. Mathematical definitions

This section contains all the necessary definitions and notations used throughout this
thesis. They are introduced without further justification. We restrict ourselves to lattice
systems; the phase space associated to each site will always be countable for classical
systems, and is a Hilbert space with a countable basis in the case of quantum systems. A
description of the formalism of Classical Statistical Physics may be found in [EFS 1993,
Geo 1988, Sim 1993, Sin 1982, Vel 1997]. Concerning Quantum Statistical Mechanics, the
mathematical framework for systems with a variable number of particles — the second
quantization — is very well explained in [MR 1990]; for lattice models, standard references
are [BR 1981, Sim 1993].

We denote by A C Z" the lattice, v is the dimension of the system. The distance
between z,y € A is |z — y| = dist(z,y) = |7 — Y|l The r-boundary of A is 0,A = {z €
A - dist(z,A°) < r} and its diameter is diam A = max, yep |z —y|. Let fA € C, A CZ"; a
thermodynamic limit of fy is the limit of a sequence (fa, )n, such that A,,, C A, if m < n,
and lim,_,« [0, Ap|/|An| = 0 for all r < co. We say that the thermodynamic limit of
fa exists, and worths f, if any such sequence converges to f; we write f = limy zv fo. A
set A is connected if for any z,y € A, there exists a sequence (zg,z1,...,x,) such that
xo=2,2, =Y,z € Aand |z; —x;q| =1forall j,1 < j < n. It is useful to define
the symbol M (“intersection”): for A, B C Z",

AmB < AU B is a connected set.
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We shall need a bound for the number of connected sets of given size, that contain a
given site. So let? J = (2v)?; then we have the property

#(ACZ': A>zand |A|=1) < 20 (2.1)

2.1. Phase spaces. Our intention is to describe quantum systems that are perturba-
tions of classical ones; this is the reason why we introduce first the classical configurations,
which then allow to construct the Hilbert spaces of quantum models.

Three are basically three types of models: spin, fermions and bosons ones.?> The single
site phase space (2 is

Q={-5-5+1,...,5—1,5} for spin-S systems
Q=<{0,1}* for fermion systems
N> for boson systems.

Here, ¥ is a finite set that represents internal degrees of freedom of particles, such as spins
(for the Hubbard model, ¥ = {1,/}).

The phase space of the classical model is the configuration space Q = Q%" and
n €  is a configuration on the infinite lattice. n, € € represents the configuration at
site £ € Z" and n4 is the restriction of n to A C Z". For particle systems, we define ng,,
(z,0) € ZV x ¥, in obvious manner (ng, € {0,1} for fermions, n,, € N for bosons). The
total number of particles in A C Z" is

|nA| = Z Ngo- (22)

TEA,0EY

Finally, we introduce the notation n Ank\ 4 for a configuration of QA whose restriction on
A, resp. A\ A, is ny, resp. nz\\A.

The Hilbert space representing the phase space of a quantum system has different
structure, in the case of spins, bosons or fermions:

e spin systems: tensorial product of copies of the Hilbert space for one spin attached
to a given site of the lattice;

e boson systems: Fock space of symmetric wave functions on A;

e fermion systems: Fock space of antisymmetric wave functions on A.

In the case of particle systems, a convenient basis of the Fock space is that of occupation
numbers of the position operators. The distinction between spins, bosons or fermions is
contained in the choice of the single site phase space, and on the action of creation and
annihilation operators on the elements of the basis of occupation numbers, that we define
below.

Let Ha the Hilbert space of the system in a finite volume A C Z%; it is spanned by
the classical configurations of Q% i.e. Hx contains all |v),

vy = Z any |nA),  an, €C, (2.3)

nAEQA

247" is the Hebrew letter “beth”.

3For sake of simplicity, but regretfully, I assume here that the considered systems are fully fermionic
or fully bosonic. However, there are interesting models with mixed particles, as for instance the Helium
model that is discussed in the concluding remarks, Chapter 9. The Hilbert space for systems of mixed
particles are tensorial products of Hilbert spaces for each species.



14 2. MATHEMATICAL MODELIZATION

and the scalar product is

(v|v'y = Z N (2.4)

np QA

2.2. Classical interactions. An interaction is a collection of mappings ® = (® 4) 4,
A C 7V connected, ® 4 : Q4 — RU{+o0}. Let t, denote a translation of z € Z; its action
on the configurations is defined by (t;n), = ny_,; on the interactions, it is t;,®4 = Py, 4 =
® 41 ,. The interaction ® is periodic with period £y € Nif ®4(n4) = t;Pa((tzn) a44) for
any © € {gZ", A C Z" and ny € Q4. It is translation invariant if it is periodic with
period /g = 1. The set of periodic configurations is denoted €2 P°".

An interaction @ is an m-potential if there exists a set of configurations G C  such
that for all A C A for which &4 # 0,

e Pua(ga) = Palgy) forallg,g' € G,
o Oy(ng) —Pa(ga) >0 forall g € G and n € Q, such that ns # ¢’y for all ¢’ € G.

G is then the set of ground states of ®.
There is exponential decay if there is a constant ¢ > 0 such that for r < oo

Y [@ana)le < oo (2.5)
Adgz,|A[ > r

for any n € Q with sup,czv [ny| < co. (This definition allows the potential to have a
hard-core.) The interaction is stable if for all z, n,

> @@A(m) > blng| —a (2.6)
Adz
for some constants a < oo, b > 0. The space of all stable interactions is a vector space, if
we define ® + ¥ by (® + ¥)4(na) = Pa(na) +Va(na); we note O the zero of this vector
space.

The Hamiltonian HY (with free boundary conditions) is the sum of the interactions
in the system, defined by

HR(np) =Y ®a(na). (2.7)
ACA
The energy (or mean energy) of a periodic configuration n € QP is

1
® . ®
= lim H . 2.
o (n) = lim e () (28)
The minimum energy of an interaction @ is the ground energy eg’ ,

¢ . ®

= f . 2.9
e = Inf e%(n) (2.9)

The set of the periodic ground states of an interaction ® is
G® ={g € QP :e®(g) =€)

This set may be empty. There exist systems with finite single site phase space, and finite-
range, translation invariant interaction, which do not possess any periodic ground states,
see [Mie 1993].

Two interactions ® and ¥ are physically equivalent if for any A C Z”, the difference

> (@alna) — Wa(na))

ANA#D
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does not depend on ny. Two physically equivalent interactions have the same set of Gibbs
states [Geo 1988], see also [EFS 1993] for useful comments.

Ezample: Zero-potentials [GJL 1992, Ken 1994].

A zero-potential ¢ is an interaction that is physically equivalent to @. Then ® + ¢ and
® are physically equivalent.

Zero potentials are useful when studying certain frustrated interactions, since they
may allow to replace this interaction by an m-potential. For instance, take a lattice gas
model with interaction on sets B = (z,y, z) (where 2 and z are two opposite neighbours
of y):

dp(e00) = Pg(coe) =0

dp(oe0) =3 (2.10)

dp(000) = Pp(cee) = Pp(ee0) = Pp(ece) = Pp(eee) =1
where empty circle means no particle, and filled circle means one particle. If we define
dB(Ngnyn,) = ng — 2ny + n,, then (O + %gﬁ) is a physically equivalent interaction that
is an m-potential, the ground configurations being those that contain only patterns ceo,
coe and @00 (there are six ground configurations in two dimensions).

An important class of (stable) interactions that we shall often consider is the ones

that act only on blocks, and that satisfy a Peierls condition. Let Ry € %N; we define the
Ry-neighbourhood U (z) of € 7V as

7V ly—z| < i
U(:zc)z{{ye ly — 2| < Ro} if Ry € N

2.11
{yeZ’:|ly—(z1+3,....7,+ 3)| < Ry} otherwise. (2.11)

A periodic interaction ® belongs to the class C(Ry, G, Ag, a,b), Ry € %N, G C Q is a finite
set of periodic configurations, Ay > 0, a € R, b > 0, if it satifies the following properties :
e &y =0if A#U(x) for all z € Z".
e For all g € G, ®p(s)(gu()) is independent of z € Z¥; we write e(g) = Py (4 (9r(a));
and define ef = mingcq e(g).
e (Peierls condition) If ny () # gu(y) for all g € G,

Oy (n(y) = €5 + Ao (2.12)
¢ Finally, the potential is stable
D7) (n(z) = €f + blng| — a. (2.13)

The classes are such that
C(R07 Ga AO? a, b) C C(Roa Ga A67 ala b,)

if Ay > Aj,a < o and b > V. Furthermore, if ® € C(Ry, G, Ay, a,b), and R > Ry,
then the interaction @'

P’y (na) = {

Dy (q)(ny(zy) if A is the Rj-neighbourhood of some x € Z¥
0 otherwise

belongs to C(Ry, G, A, a,b) and is physically equivalent to ®. In the sequel, we shall often
write @, instead of @y, for an interaction belonging to such a class.

If the single site phase space is finite, condition (2.13) is no longer useful, and we
denote by C(Ry,G,Ay) the space of interactions that satisfy all the conditions, except
(2.13).
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2.3. Quantum interactions. We first have to embed classical systems in a quan-
tum framework. The Hilbert space is constructed from quantum configurations, and the
quantum equivalent V = (V4) of a classical interaction ® = (®4) is a collection of
operators

Va: DV4) CHA— Ha
Valna) = @a(na)lna).

Quantum equivalents of classical interactions are diagonal operators in the basis of
classical configurations. The domain of Vj is not necessarily the whole of H 4, V4 may
even not be densely defined — we want to accept models with hard-cores. It is however
useful to notice that (®4) is bounded below, see (2.13), and therefore the operators e #V4 |
with 8 > 0, are defined everywhere in H 4.

Next we define creation and annihilation operators on the basis of occupation numbers
of Ha.

e Bosons:
ci.(, InA) = Vnge + 1|ny) with n;/cr’ = Nyo' + Opylgq
Coo |PA) = V/Nizo |P)) with n;/cr’ = Nyo' — Ozylgg- (2.14)
Creation and annihilation operators satisfy the commutation relations
[c};’g,c;g,] =0, [cgosCyo] =0, [cx,g,c;g,] = 03,4000 -
e Fermions: we first have to choose an order on A and X; this induces an order on
A x X by
(y,0') < (z,0) &= y <z, ory==zand o <o.
Then
chy ) = (1= 1) (—1)Z 00 ™0 ) With 0l = Tyt + Gy
Cao [TA) = Ngo (—1) 2= we <o) M’ |, ) with 7, = nygr — Opylper.  (2.15)

We have the anticommutation relations
{Cl‘so—’ CL,O”} = 0’ {sto—’ Cyagl} = 07 {C$’0—7 CZE:U,} = 6$ay6070, ‘

In order to have correlation functions or order parameters, we need a notion of local
operator. K is a local operator with connected support Supp K C ZY, if | Supp K| < oo
and it satisfies the following conditions, for fermions or bosons, respectively:

¢ (Fermions) K is a finite sum of even monomials in creation and annihilation oper-
ators of fermionic particles at a given site, i.e.

_ i T
K= Yo Koo GGl - Comat
(21,01)-5(T0,0¢)
(yl agll)"'a(ymaa:fn)

with (z;, o), (yi,a;-) € Supp K x ¥; £+ m must be an even number.
e (Spins or bosons) K is densely defined in H (A D Supp K), and the matrix element

/!
(nal K [ny)
. I . .
is zero whenever n\gupp xk 7 1 A\Supp K and otherwise it depends on ngypp k and

/
Ngupp i ONLy-
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We denote with £ the space of all bounded local operators. Notice that in the case of
bosonic systems, the creation operators cg; do not belong to L, neither do the operators
number of particles at a given site. Since we would like to consider their expectation
values, we introduce the space L(c), ¢ < oo, of moderately off-diagonal local operators,
which satisfy

> (| K [n)| < C efmsmrr] (2.16)
n'eQ

for all n € Q. Notice that L(c=0) = L.

A quantum interaction is a collection of local operators (T'a), A = (A,o0), with
support A C Z" connected, and o represents additional degrees of freedom, as for instance
spins.* (By abuse of notation, we consider that for any A D A, T4 : Hpa — Ha.) We write

Ty = Y Ta. (2.17)

In view of the space-time representation for quantum systems, see Chapter 7, we call A a
quantum transition.

When the single site phase space is finite, a convenient definition for the norm ||7'||
of a quantum interaction (T4) is®

1/]A
|T|| = sup [ max_|(n/y] Ta |nA>” i (2.18)
Aczvtnan, €04

This is a norm, provided the multiplication of an interaction T' by a scalar A is defined to
be (A\T)a = MAIT, . In this case the space of quantum interactions is no vector space, but
it does not matter. Let Q the space of interactions with finite norm.

In the case of boson systems, this definition is inconvenient, already because hopping
terms Ty = cl-cy do not belong to Q. Therefore we define the following norm

{ [imal Tariy)] -5~ M})” . (2.19)

T|| = (
7= sup ( sup AZal:

ACZY M0 n' €QA [nal +1
and we denote by Qy, the space of interactions for which this norm is finite. A hopping

term of the form (txyc;[;cy)x,yezu with |tz,| < e 777 belongs to Qy.5
Notice the inequalities

S Y qlonl Taln)| < " (2.20

> X il Taini) < i (221)

for any B C Z" and ng € QF. If ||T|| < oo, each operator T4 is densely defined in H 4
(and hence in Hp, A D A); we denote by Q the space of quantum interactions with finite
norm.

*These degrees of freedom may coincide with the set 3.

*In the sequel, we should not mix up the norm ||T'|| of an interaction T, with the operator norm ||Ta|l
of the local operator Ta.

6 Stricto sensu it does not, because supports are not necessarily connected. However, it is clear that
one can rewrite it into another interaction with connected supports.
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2.4. Phase diagrams. So far we have considered only one thermodynamic parame-
ter, namely the inverse temperature 5. But other quantities such as the external magnetic
field or the chemical potential have to be taken into account. Notice that a non zero mag-
netic field modifies the Hamiltonian; the chemical potential is present whenever we are
considering the grand-canonical ensemble, and a common trick consists in redefining a new
Hamiltonian by substracting to the ancient one the number of particles times the chemical
potential, and to go to the canonical ensemble. The Hamiltonian is then a function of
these two thermodynamic parameters:

Hy(na) =Y @a(na) —hY_ Sp(ng) — Y Nu(ng)

ACA TEA TEA

= Z @}If{”(n/‘).

ACA

Consequently let g = (p1,...,p—1) € U be a family of external fields where ¢/ is an
open subset of RP~!. The interaction ® is now supposed to depend on .

Let us write G* = G®®) the set of periodic ground states of ®* and GY = UpeuG*.
We suppose that |GY]| = p, with 1 < p < oo; we note G¥ = {¢g1), ... ¢g®}. The
zero-temperature phase diagram of ®(u) is the decomposition of i:

U= U Q)
QCGHY

with 9M(Q) the set of p where the set of ground states is @, i.e.

MQ)={pnel:G'=Q}
Remark that 9MM(2) = @ and M(Q) NM(Q') =T if Q # Q.

An alternative description of the zero-temperature phase diagram, which admits a
generalization to low temperatures in the framework of the Pirogov-Sinai theory, is to
define, for each g € GY:

Mg) = {p € U e(g) = min e(g)}. (2.22)
g’EG“
Then” M(Q) is the subset of U where all g € Q are ground states, and all g ¢ Q have
strictly bigger energy; that is,
m =N M U 9M(g). 2.23
@= 10, (g)\gw (9) (2.23)

This phase diagram is said to be regular, or alternatively to satisfy the Gibbs phase

rule, if the function

U — boundary of the positive octant of R? (2.24)
[T (e”(g(l))—eg,...,e“(g(p))—eg) (2.25)

is a homeomorphism whose image contains a neighbourhood of the origin of RP. In other
words, the zero-temperature phase diagram has the following structure: there exist p, € U
where all the energies are equal, p different lines where (p — 1) configurations are ground
states, %p(p—l) 2-dimensional surfaces with (p—2) ground states, ... , p (p—1)-dimensional
manifolds where only one state has minimum energy. We have the following relations for

the closures of the manifolds: M(Q) NIM(Q') = M(Q U Q).

"One should not mix M(g) with M({g}); actually, M({g}) C M(g) is the set of external fields p where
g is unique ground state.
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Actually we shall need a stronger condition than regularity of the phase diagram,
namely that the u; removes the degeneracy at p linearly: we suppose that there exists
po € U where eto(g) = eb® for any g € GY, and that the matrix of derivatives

( o [6“(9‘”)%“(9"”)]) (2.26)

Opi 1<ij <pol

exists and has non zero determinant for all u € U. If an interaction ®¥ satisfies this
condition, we say that its zero-temperature phase diagram is linearly regular.

Our main goal is to show the stability of such phase diagrams when the temperature
is small but non zero, as well as when a quantum perturbation is added to the interaction.
The p ground states have to be replaced by p phases, or thermodynamic states, that
represent small deformations of these ground states, in a sense that will be given more
precise meaning later.

3. Thermodynamic states

We define thermodynamic states starting from finite systems, and then taking the
thermodynamic limit.

Let us start with free boundary conditions. The canonical partition function at
temperature 3 is

Zx = Try, exp(—ﬁ S (Ta+ VA)). (2.27)
ACA

This allows to define the free energy of the system, namely

1
= — lim ——logZ 2.2
f== lim, BIA] 08 2 (2.28)

(if the limit exists).

3.1. Periodic boundary conditions. Let L € N; we define AP (L) = ZV/(LZ)".
The Hamiltonian with periodic boundary conditions is

HYver(na) = Y ®a(na). (2.29)
ACAper

The notion of physical equivalence is simpler in the case of periodic systems. Indeed,
two finite-range interactions ® and ¥ (with range smaller than the size of lattice) are
physically equivalent if

S (2alma) = Ta(ma)) = AP const (2.30)
ACA per
for any n.
3.2. Boundary conditions with boundary operators. In the classical case, given

an interaction ®, a usual way to introduce boundary conditions is to take a fixed config-
uration g € €2, and for any finite A € Z" to define the Hamiltonian

2O (ny) = Yo dana)+ D). Pa(nanagan)-
ACA AZA,ANA#D
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In words, the idea is to freeze the configuration outside of A, and to take into account the
interactions across the boundary. The same can be described by introducing a boundary
interaction 9™®9:

INna)= > Da(nagana); (2.31)
AT A ANA=A

then H[(Xo)g is given by the Hamiltonian with free boundary conditions, plus this boundary
interaction, namely

H =HY + 5 0™ (na). (2.32)
ACA

If ® is of finite range, only terms close to the boundary contribute in the second sum.
Such a generalization of boundary conditions was considered in [BLP 1979].

In a sense the boundary interaction modelizes much better the boundary of a physical
system than interactions with configurations outside of A, which do not exist in reality.
However, it should be clear that boundary conditions are only a mathematical tool useful
for the description of phase coexistence, and their physical interpretation should not be
overstressed.

A natural generalization of these classical boundary conditions is quantum ones. Here
we would replace the classical boundary interaction by quantum operators. Good examples
should be, for bosons,

"= > (ch+e), (2.33)
TEOMA

and for fermions,

o = Z (CLCL + czcy). (2.34)

TYyENA

lz—yl < r
As in the classical situation, these operators break some symmetries of the system, al-
though the symmetries are now different. The total number of particles is no more a
constant, which means that the system is not necessarily gauge invariant. In this case,
the system displays features of superfluidity or superconductivity. Their order parame-

ters are® (cS) (superfluidity for bosonic systems), see Penrose and Onsager [PO 1956], or

(chcg 1) (superconductivity in some fermionic systems) [Yang 1962]. With free, periodic
or classical boundary conditions, these order parameters are obviously zero if the Hamil-
tonian conserves the total number of particles. However, they may differ from zero with
quantum boundary conditions. If they are non zero (in the thermodynamic limit), the
heuristical meaning is that a particle created at site 0 travels and eventually disappears at
the far boundary. It is therefore reasonable to expect special transport and conductivity
properties in systems with such equilibrium states.

3.3. States. A thermodynamic state, or state, or phase, in Quantum Statistical
Physics is a linear, normalized, positive functional on the space of local operators. Let H

8The operator c;r) is unbounded, and this may create technical difficulties. An alternative is to consider

the order parameter ((no)~ zch ).
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be a Hamiltonian. If for all local operators K € L the limit

Tra . K e~ PHa
(K) = lim —a—%

i e (2.35)

exists, we call (-) a Gibbs state at inverse temperature 3 and with free boundary condi-
tions. Similarly, a Gibbs state with periodic boundary conditions is a limit
'I\r K 76HA per
(K)P = Ti s K€
AJZv Try, e=BHaver

(2.36)

(provided it exists for all K € L).

Finally, we define Gibbs states with boundary interactions. For instance, (-)¢ is con-
structed by considering finite volumes Hamiltonians® Hy 4+ 0*®9 where 9*®9 is given by
(2.31).

Phase coexistence and first-order phase transitions are present when the thermody-
namic states are sensitive to boundary conditions. Actually, since the system jumps from
one phase to another when varying the corresponding thermodynamic parameter, it is also
sensitive to external perturbations; for instance, by slightly modifying this parameter. We
are lead to the notion of thermodynamic stability.

A state (-)f, constructed with a Hamiltonian H, is thermodynamically stable if
for any P € Q,

(K)T = lim (K" +oP (2.37)
a—0

for all K € L.
The link between boundary and thermodynamic stability should be the following.

CONJECTURE.
A state is thermodynamically stable iff it is insensitive to boundary conditions (i.e. to
the effect of a boundary operator).

Another important notion is that of clustering. Namely, a thermodynamic state is
exponentially clustering if for any two local observables K, K' € L,

(Kt (K") — (K)(t:(K")| < O(K, K')e17/¢ (2.38)

with constants ¢ < co that depends on the state only, and C(K, K') < oo that depends
on the operators only. In other words, a state is exponentially clustering whenever all
correlations decay exponentially quickly.

CONJECTURE.
A thermodynamically stable state is exponentially clustering.

The converse of this conjecture is wrong. For instance, the “ 4+ 7 phase of the Ising
model below the critical temperature and with zero external magnetic field is exponentially
clustering, but unstable with respect to a small negative magnetic field.

External perturbations can break symmetries of the Hamiltonian, as may do boundary
conditions. The gauge invariance of a quantum model can be broken by the field ) A(CL
¢z) [Gin 1968]. The corresponding physical properties of the system should be that of a
superfluid.

Extremal states of Classical Statistical Physics can be constructed as thermodynamic
limits of finite systems with suitable boundary conditions. In the sequel we shall consider

9More precisely, we consider the quantum equivalent of %9,
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such an approach with quantum models. However, when discussing the effect of quantum
fluctuations, we shall be into technical troubles, and it simplifies the task to consider
external fields and periodic boundary conditions. Pure states at a coexistence point will
be constructed by taking limits of thermodynamically stable states. This motivates the
following definition of pureness: a linear, normalized, positive functional (-) is a pure
state if there exists P € () such that

e for all a € (0, ], (-)77F is a thermodynamically stable Gibbs state;

o () =lim, ,o(-)+oP,
Notice that any thermodynamically stable state is pure. We call phase coexistence the
situation where two or more pure states exist for a given Hamiltonian, or a given external

field.

Let us end this chapter by mentionning the following standard convention on sums
and products, that is used throughout this thesis: > _,a, = 0, [[,cgan = 1 (this
convention makes partition functions of contour models simple and elegant).



CHAPTER 3

Low temperature phases and stability of phase diagrams

This chapter summarizes the results for quantum lattice models proven throughout
this thesis. Their common point is that all of them are obtained using the Duhamel
representation of a quantum system (see Section 1, Chapter 7) and the cluster expansion
(Chapter 5). Some of them also rely on the Pirogov-Sinai theory (Chapter 6).

1. High temperature phases

It may seem bizarre to discuss high temperature phases in this chapter devoted to the
low temperatures, but high temperature expansions constitute a simple and nice illustra-
tion of the use of cluster expansion, hence we introduce them in Chapter 5.

Interactions between the particles are unimportant at high temperature, and thus we
are left with a nearly ideal gas, whose physical state shows all the symmetries of the
system. All this is known for more than 30 years, see e.g. [Dob 1968, Kunz 1978], ...
Concerning quantum systems, boson lattice systems were considered in [PY 1995].

THEOREM 3.1. Analyticity at high temperature.

Let H be the Hilbert space constructed from the single site phase space Q with |Q] =
S < oo. TH = (T%) is a translation invariant quantum interaction that depends on a
parameter p € U C R, such that

o [T4,T4]=0 when AN A" = @;
o (na|Th|n')) is analytic in p, for any A, n,n';
o > a5 ITH]] el < 0o for a constant ¢ > 2v + 1 + log 2.
Then the free energy
1 1
F(Bom) = — lim
(B p8) = =75 lim, A

exists and is analytic in B and w in the domain

{w.0) et x®e - 530 T e <1},

Adx

log Tr e PXaca Tk

The corresponding Gibbs state exists in the thermodynamic limit, is thermodynamically
stable, pure and exponentially clustering.

This result is obtained in Section 3 of Chapter 5.

2. Quantum models with local interactions

When the (classical) interaction is only on-site, i.e.

v VE if A= {x}
A = .
0 otherwise,

23
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with V' Hzy — H{z), then the free energy is analytic in a domain where 3 and T* are
small enough, independently of V¥. Actually, the statement shows similarities with the
high temperature case. Here, each site is almost isolated, and the free energy is close to
that of a system with only one site; no phase transition occurs, for the same reason that
there are none in zero-dimensional systems.

THEOREM 3.2. Analyticity with local interactions.

We consider a model with single site state space Q, || = S < oo, and Hamiltonian
H* =VHE 4+ TH where V# is an on-site interaction, and T* is translation invariant. We
assume that

o [T4,T4]=0 when AN A" = @;

o (na|Th|n')) is analytic in p, for any A, n,n';

o > a5 ITH]] el < 0o for a constant ¢ > 2v 4+ 1 + log 23 + log S.

Then the thermodynamic limit of the free energy exists and is analytic in B and p in the
domain
{w0) eux v : g3 T e <1},
A>zx
and the corresponding Gibbs state exists in the thermodynamic limit, is thermodynamically
stable, pure and exponentially clustering.

The proof combines Duhamel representation and cluster expansion, see Section 2,
Chapter 7. The Hubbard model is an example of a Hamiltonian with on-site interaction;
Theorem 3.2 establishes the existence of a paramagnetic phase in a domain (3|t| < const (at
half filling, one can improve this result by showing analyticity in a domain $t?/U < const
[Uel 1998]); see Chapter 4 for more discussion. Another example is the Falicov-Kimball
model, for which this statement was proved in [KL 1986] (as well as in the domain 8t?/U <
const).

3. Results of the quantum Pirogov-Sinai theory

We consider in this section quantum models that consist in a classical interaction which
has well-understood low temperature phase diagram, and a quantum perturbation. We
show that the latter does not destroy the classical picture, i.e. that quantum fluctuations
do not play an important role. This amounts to say that the classical model is a good
approximation for the description of the quantum system.

Results in this direction start with Ginibre [Gin 1969] and Robinson [Rob 1969], who
proved long-range order in some spin systems. An important model is the Heisenberg
one; if the coupling between neighbouring spins is anisotropic, i.e. if the coupling between
the spins in the z-direction, say, is stronger than the coupling in the directions x and y,
Kennedy proved that there is long-range order at low enough temperature [Ken 1985].
When the anisotropy is high, this result is a special case of our theorem below, but it does
not cover the situation with weak anisotropy.

A fermion model with nearest-neigbour couplings was studied in [LM 1993]; here the
“classical term” is the antiferromagnetic Ising model, and the phases of the quantum
systems are shown to display chessboard features. All these results rely on the Peierls
argument, so that it is necessary that the phases are related by some symmetry. In
the context of Classical Physics, the generalization of the Peierls argument to situations
without such symmetry was achieved by Pirogov and Sinai [PS 1975, Sin 1982] and bears
now the name of its authors. Its application to quantum spin systems was suggested
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in [Pir 1978], but was realized only twenty years later [BKU 1996, DFF 1996]|. Fermion
systems present an additional technical difficulty; in the contour representation of the
quantum system, one has to deal with a sign arising from the anticommutation relations,
and it is necessary to show its factorization with respect to the contours. This factorization
was proved in [DFF 1996], so that their results also apply to fermion systems.

Here we present a theorem valid for spin, fermion, and boson systems, that is sum-
marizing — and slightly extending — results of [BKU 1996, DFF 1996, BKU 1997]. It
follows from Chapters 6 and 7.

THEOREM 3.3. Stability of the phase diagram against quantum fluctuations.

Let v, the dimension of the system, be bigger or equal to 2. We consider a Hamiltonian
H* = TH 4 VB depending on a parameter p € U C RP™', where V# is the quantum
equivalent of a classical interaction ®* € C(Ry, G*, Ay, a,b), with |UpeuG*| = |GY| =p <
0o, and with linearly regular zero-temperature phase diagram. TH € Qy, is a differentiable
quantum perturbation. Then for any § > 0, there exist By < oo and g9 > 0 such that if
B > By and | TH||+ 3P~} ||a%iT“|| < g for all w, there exist p functions f*(g), g € GY,
such that

e if Re f¥(go) = mingcqu Re f¥(g), f*(go) is the (infinite volume) free energy of the

system.

e The matriz of derivatives

( 0 [Re f#(g¥) — Re fu(g(p))])
Opi
exists and has an inverse matriz that is uniformly bounded in .
e For all local operators K € L(0), and if Re f*(go) = mingccu Re f#(g), the expec-
tation value (with classical boundary conditions go)

1<i,j <p-1

"
()b =l DT 6H,LA’9°
ALY Tre’ﬁHA,go
exists, and is close to the value of K in the ground state go: there exists Cx < oo
such that
[(K)5H — (go] K |g0)| < Cico.
This describes a pure state with exponential decay of correlations, i.e. there exists £

such that for all K, K' € L(0),
(Kt K)ok = (K)o (e Kk

with Cr rr < 00.

< Crx e lel/E

o If gy is the unique minimum of {Re f*(g)}, the state (-)gg“ is thermodynamically

stable.

In the case of boson systems, we would like to have statements concerning the expecta-
tion value of local operators such as the operator number of particles in a subset A, or the
operator creation of a particle at site z. But V. A,c‘]; ¢ L£(0), since they are not bounded.
To obtain a statement for local operators of L(c), we need a further assumption, namely
that the quantum interaction conserves the number of particles.

!One-dimensional models could be included, but only at 8 — co. The reason why this does not hold
at finite temperature is that the system may create arbitrarily large excitations having fixed energy cost.
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THEOREM 3.4. Bosonic states.

Under the same assumption as in Theorem 3.3, and supposing moreover that T satisfies
[Ta, Na] =0 for any A, then if Re f#(go) = mingcqu Re f#(g), the expectation value of
K € L(c)

exists, and is close to the value of K in the ground state gy. The state (-)g(;” describes a
pure state with exponential decay of correlations.

This result is true for all ¢, but not uniformly: constants [y and ¢y depend on c.

4. Effective interactions due to quantum fluctuations

When the classical interaction has an infinite number of ground states, the quantum
perturbation may stabilize some of them. Examples of quantum lattice models with de-
generate classical ground states are Hubbard and Falicov-Kimball models.? The first one
is certainly the most interesting, but the latter allows rigorous studies. Kennedy and
Lieb succeeded in applying the Peierls argument to exhibit a region of low temperatures
where the quantum fluctuations are more important than the thermal ones [KL 1986]. The
method was generalized in [LM1 1994, LM2 1994]. In the latter the degrees of freedom
can be continuous.

A general method to study the low temperature behaviour of these systems was re-
cently proposed by Datta, Ferndndez, Frohlich and Rey-Bellet [DFFR 1996]. The idea is
to replace the original Hamiltonian by a unitary equivalent one, that is diagonal up to
negligible terms, and that has only a finite number of ground states. These are stable by
virtue of Pirogov-Sinai theory.

The approach of [KU 1998], that we consider here, is different, although it leads to
comparable results. We show that “quantum fluctuations” act as a classical effective
potential. One has then to study the ground states of both the original interaction and
the effective potential, and whenever this new classical model satisfies a suitable Peierls
condition, and that there is “no quantum instability” (see below), its ground states are
stable with respect to thermal, and other quantum, fluctuations.

4.1. The model. Different assumptions are needed. First, we restrict ourselves to
systems with finite single site phase space, i.e. |2] = § < oco. The extension to lattice
boson systems should be straightforward, but it is nevertheless a hard task that is not
done so far. Second, since we are unable to include boundary conditions, we consider a
periodic lattice AP®". As before, the dimension v of the system is bigger or equal to 2.

The Hamiltonian of the system is, as before, given by a classical interaction ® and a
quantum perturbation T' € Q.

We suppose that a fixed collection of reference configurations G C € is given® and we
let A = U,eaU(x) (recall that U(z) is the Rp-neighbourhood of z) and G4 = {g4 : g € G},
A C Z". G may be an infinite set.

*Reviews on these models include [Lieb 1993] for the Hubbard model, and [GM 1996] for the Falicov-
Kimball model.

3In some situations G is simply the set of all ground configurations of ®. When discussing the full
phase diagram, however, we will typically extend the interaction ® to a class of interactions by adding
certain “external fields”. The set G then will actually play the role of ground states of the interaction with
particular values of external fields (the point of maximal coexistence of the ground state phase diagram).



4. EFFECTIVE INTERACTIONS DUE TO QUANTUM FLUCTUATIONS 27

We assume that the local energy gap of excitations is uniformly bounded from below,
while the spread of local energies of reference states is not too big:

AssuMPTION 1. Classical interaction.
D is a block interaction with finite range Ry € %N and is periodic with period £y < co.
There exists a set G C Q, possibly infinite, such that for all ny ) ¢ Gu(a),

q)z z)) q)z T > A 2
(n0(2)) max (9U(z)) 0 (3.2)
with Ay > 0, and
!
g{lgl,aé)é‘éx(QU(x)) - <I)x(QU(I))‘ < do, (3.3)

0o < 0o. Furthermore, we assume the following extension property on the set of reference
states G: if, for a connected A C 7", a configuration n is such that ny () € Gy for any
x €A, thennji€Gj .

In view of the definition of the effective potential, it is useful to note the following
property.

PROPERTY. Let ® satisfy Assumption 1, R be such that R* < Ag/dy, and A C Z¥
with diam A < R. Then any pair of configurations g; € Gz and nz ¢ Gz, with
Ni\a = 9i\a, Satisfies the lower bound

Z[%(nU(I)) - <I>x(9U(z))] > RVA. (3.4)
€A

PROOF. Since nz ¢ G 3, there exists at least one site z € A such that ny ) ¢ Gy (q)-
From the assumption, this implies that

Z [q)x(nU(l‘)) - q)l‘(gU(x))] > Ag— Z 00-

zEA YyEAyFT

Using |A] < RY, we obtain the property. O

4.2. The effective potential. It is actually a cumbersome task to write down a
compact formula for the effective potential in the general case. A lot of notation has
to be introduced, and one pays for the generality by the fact that the resulting formula
look rather obscure; nevertheless, the logic behind the following definitions and equations
appears rather naturally along the steps in Chapter 8. In the next subsection we shall
discuss a special case where the effective interaction is due to at most four transitions
resulting in much simpler and straightforward formulse. We would like to stress that
for typical concrete models this is entirely sufficient. The reader might thus skip the
present subsection on the first reading and consider only the simplified situation of the
next subsection.

The real meaning of the next definitions [in particular (3.7)] will appear more clearly
only in Chapter 8, but, in the general case, we cannot leave it aside. First of all, we
assume that a list S of sequences of quantum transitions A is given to represent the leading
quantum fluctuations. The particular choice of S depends on properties of the considered
model. Often the obvious choice like “any sequence of transitions not surpassing a given
order” is sufficient. In the general case, certain conditions (specified later in Assumption
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3) involving S are to be met. For any g4 € G4, the effective potential ¥ is defined to
equal

I >

n>1 kiyoskn > 2 (AL, AL Al, AR )ES

U”A =A
- ki
H{ Z I( Zia s 7Ai;i;niilg1\\,4, R ,n/;ki ga\A |:H OVh 1|TA; |n29>]
i=1 774341, . f4k _1¢GA i1

ki—1 ) ) .
/ rf ., [ [ o i) Senlosto nifl) %(gmz))]}}
—00<Ti<...<T} <00 ' =1

I [mini] <0 and max”T > 0]

¢l (Bi,...Bn). (3.5)

max; ;j T. J —min; ; T J

To begin to decode this formula, notice first that the second sum is over all sequences

(Al,..., A}gl,A%, ..., AL ) of transitions that are in the list S and are just covering the
set A, Ui,jflz- = A. The sum in the braces (for a given i = 1,...,n) is taken over collections
of configurations nz/;l, . ,nf,iki_l ¢ G4 with nl/io = nZAk’ = g4, while the integral is taken

over “times” attributed to transitions, with the energy term in the exponent taken over
the set A* = U§;1 A%, A= UzealUl(z).
Finally, there are some restrictions on the sums and integrals encoded in functions

I [mml i P20 and max; y T! >0]

ks g 77 , 0 (By,...By), and T(AL,... ,Aﬁgi;nzlgA\A, . ,nfj]kﬁlgA\A).
The easiest is the first one. One just assumes that the interval between the first and the
last of concerned “times” contains the origin and the integrand is divided by the length
of this interval. The function @1 (Bi,...B,) in terms of the sets B; = A’ x [Tii,T]ii] C

ZV X [—00,¢], i = 1,...,n, is the standard factor from the theory of cluster expansions
defined as

"B B,) = 1 ifn=1

P AL O g1l ueg( I [B; UB; is connected |) ifn > 2

with the sum over all connected graphs G of n vertices. Connectedness of a set B C
Z" x [—00, 0] is defined by combining connection in continuous direction with connection
in slices {z|(z,7) € B} C Z" through pairs of sites of distance one. The most difficult to
define is the restriction given by the function Z that characterizes whether the collection
of transitions is connected, in some generalized sense, through the intertwining configura-
tions. A consolation might be that in lowest orders it is always true. Namely, whenever

k < 5and]_[] 1(nA |TA |nA)7é0

1 if Ujfij is connected

I(A1,..., Agsnkgna, -0 gaa) = { (3.6)

0 if Ujfij is not connected.

(When H] 1(nA |TA |nA) = 0, the value of Z(-) is not relevant.) To define it in a
general case, consider A;,..., Ay C Z¥ and n',... ,n*~1 € Q%". Taking A = U,caU(2)
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and E(n) = {z € A : ny(y) # gu(s) for any g € G}, we consider the set BO) ¢ zv+1,
~ (0 _ k—1 .
BO = [Aj x {2 —2}} U'U [E(nﬂ) x {25 — 1}].
J=1 J=1

Think of layers, one on top of another — configurations on odd levels interspersed with

transitions on even levels. The set B(®) decomposes into connected components, B(®) =

Up>1 Béo). To any Béo), define the box Bgo) C Z¥"*! as the smallest rectangle contain-
ing Bgéo). Then let BO) = U > 1Bé0); decompose into connected components B =
Up>1 Bél), and repeat the procedure until no change occurs any more, i.e. until B(m) —

Up>1 Bém). The function Z characterizes whether this final set, the result of the above
construction, is connected or not,

1 if B(™) is connected

. (3.7)
0 otherwise.

I(Al,...,Ak;nl,...,nk_l) = {

4.3. Quantum fluctuations with less than four transitions. The equation (3.5)
for the effective potential is hard to handle in general case. However, in many situations it
is enough to consider only small sequences of less than four quantum transitions to define
it. We rewrite in this section the explicit formulz for the effective potential in such a case.

We assume thus that a list S of sequences of quantum transitions A, containing at
most 4 transitions, is given to represent the most important quantum fluctuations. Let us
decompose S = S@ USG) USW | with SK*) denoting the list of sequences with exactly k
transitions, and write

=0 4 o® 4o, (3.8)

Here U(¥) is the contribution to the effective potential due to the fluctuations from S*).
Let

palnaion) = 3 [@alnne) — Balon)].

z,U(z)CA

Then, for any connected A C Z" and g4 € G 4, we define

2 (941 Ta, Ina)(nalTa, |ga)
Wen=- Y ¥ | I¢|A o ng) 2 194), (3.9)

(Al,Az)ES(2) nA¢GA ’
A1UA2 A
T Ta, |0/ )0/, |T

\I/S’) (ga) = — Z Z (94| Ta, [na)(nal Ta, [n)s)(ns| Tas |9A>_ (3.10)

. I
Ay Al eS®) mami8Ga Pa(na;ga)pa(niy;ga)

Al UAQ UA3:A

The expression for ¥ becomes more complicated (we shall see in Chapter 8 that clusters
of excitations are actually occurring here),

\I/(:) (ga) = — Z Z (9alTa; Ina)(nalTa, Iny ) (04| Tas In4) (04 Ta, [9a)

da(nasga)a(n’y;ga)pa(n’y;ga)

(A19A29A3aA4) 8(4) nAsnAan ¢GA
A1UA2UA3UA4 A

1 3 (94]Ta, [na)(nal Ta, l9a)gal Ta, [0, (0| Ta, lga) { 1 L1 }2
da1(nasga)+o42(ny;94) da1(nasga) ' ¢u2(n'yi94) )
nan, ¢Ga

(3.11)
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Above we denoted A' = A; U Ay and A? = A3 U A4. All the denominators are strictly
positive.

These equations simplify further if T4 is a monomial in creation and annihilation
operators; indeed in the sums over intermediate configurations only one element has to be
taken into account.

Notice, finally, that the diagonal terms in 7" are not playing any role in the previous
definitions; we consider that they are small, since otherwise we would have included them
into the diagonal potential.

4.4. Stability of the dominant states. The aim of rewriting a class of quantum
transitions in terms of the effective potential was to get a control over stable low temper-
ature phases. To this end, the three conditions, expressed first only vaguely and then in
precise terms in the following Assumptions 2, 3, and 4, must be met. Namely, we suppose
that

e the Hamiltonian corresponding to the sum ® 4+ W of the classical (diagonal) and ef-
fective interactions has a finite number of ground configurations, and its excitations
have strictly positive energy;*

e the list S contains all the lowest quantum fluctuations;

e there is no “quantum instability”; the transition probability from a “ground state” g
to another “ground state” ¢’ is small compared to the energy cost of the excitations.

Each component of the effective interaction W, is a mapping G4 — R; let us first
extend it to Q4 — R by putting U 4(n4) = 0 if ny ¢ G4. To give a precise meaning to
the first condition, we suppose that a finite number of periodic reference configurations
D C @ is given such that the interaction ® + U satisfies the Peierls condition with respect
to D. We choose a formulation in which it is very easy to verify the condition and, in
addition, it takes into account the fact that the configurations from D are not necessarily
translation invariant. Namely, we will formulate the condition in terms of a potential T
that is equivalent to ® + ¥ and is chosen in a suitable way. Of course, in many particular
cases this is not necessary and the condition as stated below is valid directly for ® + .
However, in several important cases treated in Chapter 4, the interaction ® + ¥ turns
out not to be so called m-potential and the use of the equivalent m-potential T not only
simplifies the formulation of the Peierls condition, but also makes the task of its verification
much easier.

AssuMPTION 2. Peierls condition.

There exist a finite set of periodic configurations D C G with the smallest common
period Lo, a constant A such that A > ||T||k for some finite constant k, and a periodic
interaction Y (with period £y) that is physically equivalent to ® + U such that the following
conditions are satisfied. The interaction Y is a block interaction that belongs to C(R, D, A),
where the range R is finite® and is such that

R" < Ao/bo, (3.12)

with the constants &y and Ay determined by the interaction ® in Assumption 1. Excitations
with respect to G and D are separated by gaps %Ag and A respectively:

* Again, when exploring a region of phase diagram at once, we have a fixed finite set of reference con-
figurations that, strictly speaking, turn out to be ground configurations of the corresponding Hamiltonian
for a particular value of “external fields”. See below for a more detailed formulation.

SWe will suppose, taking larger R if necessary, that it is larger or equal to the range Ry of ®, as well
as to the range of the effective interaction ¥ and to Lo.
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e for any z € A and any n with ny(y) ¢ Gu(y), we have
Yo (ne(z) — max Yolgui(z) = 300

e for any x € A and any n with ny ) ¢ Dyr(y), we have

The following assumption is a condition demanding that the list S should contain all
transitions that are relevant for the effective potential. We define
m(Ta,,...,Ta,) =max max |[(g|Ta, |n")(n'|Ta, |n?)... (k1 Ta, lg9)]. (3.13)
9€G nl .. . .nk-1¢G
AssumPTION 3. Completeness of the set of quantum transitions.
There exists a function by (-) with limy_o by (\) = 0 such that for any sequence (A1, ..., Ap) ¢
S with connected U™ A; one has

m(Ta,,... 7TAk1 )m(TAk1+1’ e 7TAk2) e m(TAkn,1+1’ . Ta,,) < 0(|T))A.
Finally, we have a condition assuring that there is no quantum instability.

ASSUMPTION 4. Absence of quantum instability.
There exists a function by(+) with limy_,o bo(X) = 0 such that for any sequence (A1, ..., An),
and any g,9' € G, g # ¢, one has

(91 Ta, - Ta,, lg")| < b2(IITA.

Our first result concerns the existence of the thermodynamic limit for the state under
periodic boundary conditions. Taking Lo to be the smallest common period of periodic
configurations from D, we always consider in the following the limit over tori A " Z¥
whose sides are multiples of Ly and /.

THEOREM 3.5. Thermodynamic limit.

Suppose that the Hamiltonian is H =T +V, T € Q, and satisfies the Assumptions
1-4. Then there exist constants ¢y > 0 and By = [Bo(A) (depending on v, S, R, £y) such
that the limit

per

per _ TrKei’BHA

(K) 5 _Afr%" Ty e—BHL™

(3.14)

exists whenever ||T|| < e, B = o, and K is a local observable.

Notice the logic of constants in the theorem above (as well as in the remaining two
theorems stated below). We first choose 9. Then, for any ||T|| < &¢ one can choose
(depending on A that is determined in terms of T' through the effective potential ¥) such
that the claim is valid for the given T and any 8 > [y(A). With ||T'|| — 0 we may have
to go to lower temperatures (higher 3) to keep the control. Of course, if A does not vanish
with vanishing ||T'|| (i.e. Assumption 2 is valid for ® alone) as was the case in Theorem
3.3, one can choose the constant 3y uniformly in ||T]|.

If there are coexisting phases for a given temperature and Hamiltonian, the state (-) g e
will actually turn out to be a linear combination of several pure states. A standard way
how to select such a pure state is to consider a thermodynamic limit with a suitably
chosen fixed boundary condition. In many situations to which the present theory should
apply, this approach is not easy to implement. The classical part of the Hamiltonian might
actually consist only of on-site terms and to make the system “feel” the boundary, the
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truly quantum terms must be used. One possibility is, of course, to couple the system
with the boundary with the help of the effective potential. The problem here is, however,
that since we are interested in a genuine quantum model, we would have to introduce the
effective potential directly in the finite volume quantum state. Expanding this state, in
a similar manner as it will be done in Chapters 7-8, we would actually obtain a new,
boundary dependent effective potential. One can imagine that it would be possible to
cancel the respective terms by assuming that the boundary potential satisfies certain
“renormalizing self-consistency conditions”. However, the details of such an approach
remain to be clarified.

Hence we prefer to consider only periodic boundary conditions, and to talk about
thermodynamically stable states.

THEOREM 3.6. Pure low temperature phases.

If the Hamiltonian is H = T+V, with T € Q, and if the Assumptions 1-/4 are satisfied,
then for any n > 0, there exist eg > 0 and By = Bo(A) (depending on v, S, R, 4y) such that
if |T|| < €0 and B > By, there exists for every d € D a function f5(d) such that the set
Q = {d € D; Re f8(d) = mingcp Re f3(d')} characterizes the set of pure phases. Namely,
for any d € Q:

a) The function f5(d) is equal to the free energy of the system, i.e.
per

1 1
Ald) = == lim ——log Tr e #Ha
P =508 a8
b) There exists a pure state ()% Moreover, it is close to the state |dp) in the sense
that for any bounded local observable K and any sufficiently large A, one has

(K)E = (dnl K |dn)| < ] Supp K[|K]]

c) There is an exponential decay of correlations in the state ()%, i.e. there exists a
constant €4 > 0 such that

(KK (K)S(K')S| < |Supp K|| Supp K'||[ K[| K| o (5o K Supn K7/

for any bounded local observables K and K'.
d) The state (-)ger is a linear combination of the states ()%, d € Q, with equal weights,

for each local observable K.
e) If Q = {d}, the states ()% and (-)ger are identical, and they are thermodynamically
stable.

4.5. Phase diagram. We now turn to the phase diagram at low temperatures. Let
p be the number of dominant states, i.e. p = |D|. To be able to investigate the phase
diagram, we suppose that p — 1 suitable “external fields” are added to the Hamiltonian
H [{) . Or, in other words, we suppose that classical potential ® and quantum interaction
T depend on a vector parameter g = (u1,...,1p—1) € U, where U is an open set of RP—1
and that the zero-temperature phase diagram of ® + WV is linearly regular.

AssuMPTION 5. Phase diagram of the effective potential.
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® and T are differentiable with respect to p and there exists a constant M < oo such
that

0
—d <M
B x(nU(x)) ‘

max
nU(I)EQU(m)
forall x € 77, and

I+ ZH < m

forallpel.
Further, there exists a point py € U such that

elo(d) = eto(d') for all d,d' € D,

and the inverse of the matriz of derivatives

1 g Z:] g pfl
has a uniform bound for oll p € U.

Let P* be the corresponding phase diagram, i.e. the decomposition of ¢/ into manifolds
with configurations of minimum energy. The statement of the following theorem is that
the collection P = {M(Q)}gcp of manifolds where the configurations of @ yield pure
phases of the full model is also a regular phase diagram and differs only slightly from P*.
To measure the distance of two manifolds 9 and 9, we introduce the Hausdorff distance

disty (91, M) = max(sup dist(w, M), sup dist(p, M)).
pEM pEM

THEOREM 3.7. Low temperature phase diagram.

H=T+V,Tc¢ Q Under the Assumptions 1-5 there exist g > 0 and By = Bo(A)
such that if |T|| +> 27— Hau T|| < eo and B > o, there exists a collection of manifolds
P8 = {(M(Q)}ocn such that

(a) The collection PP determines a reqular phase diagram;

(b) If p € MP(Q), the corresponding pure state (- )ﬂ exists for every d € QQ and satisfies
the properties b), c), d) and e), from Theorem 3.6;

(¢c) The Hausdorff distance disty between the manifolds of PP and their correspondent
in P* is bounded,

distrr (M7 (Q), M*(Q)) < O(e”

for all Q@ C D.

The proofs of these theorems are given in Chapter 8.
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CHAPTER 4

Applications to Hubbard models

As illustrations we consider two systems, with fermions and bosons respectively. The
first one is a modified Hubbard model in which the hopping of the particles depends on
their spin — this modification being introduced for mathematical rather than physical
reasons. The second one is the Bose-Hubbard model, which described hopping bosons on
a lattice, with on-site and/or longer-range interactions.

1. The asymmetric Hubbard model

The physical system consists of quantum particles with spin on a lattice A C ZY
(v > 2). The phase space could be constructed as the Fock space for fermions in A;
however, it is simpler to proceed as in Chapter 2, i.e. to choose a single site phase space
and to construct the Hilbert space spanned by the classical configurations. Hence we take
Q = {0,1,1,2}; a basis of Hp is {|na) : ny € Q*}. The Hamiltonian has kinetic and
potential parts; the potential part depends on a chemical potential ;4 and an external
magnetic field h:

HWh =T 4 ik, (4.1)

T = (Ta), A = (< z,y >,0), where < x,y > is an ordered pair of nearest neighbours
(lz — yll1 = 1) and o € {1,]} is the spin; in this case

Ta = tgci.(,cyg, (4.2)

with ¢, € R being the hopping coefficient, that depends on ¢. In other words [see (2.17)],

T — tr(chieys + client) +H1y(ch ey + ol p)) if A= .{x,y} with ||lz —y|) =1
0 otherwise.

If t4 = ¢, we have the usual Hubbard model. However in the sequel we shall restrict
our attention to the range of parameters

U > [ty > [t],

when discussing the antiferromagnetic phase. Hopping coefficients are related to the mass
of particles, and there is no physical justification why the mass of spin up particles should
be much smaller than the one for spin down electrons. However, this model can have
different meaning, e.g. describing electrons interacting with ions; the latter are heavier
and thus their hopping constant is smaller. This model is a generalization of the Falicov-
Kimball one. One has to remark that the physics of the model is significantly modified
by setting ¢y # t; this artificially breaks a continuous symmetry of the Hubbard model,
namely the rotation invariance of the magnetization.
The potential V" is the quantum equivalent of a classical on-site interaction &,

(D:lrL’h (nac) = Unz’rnzi - M(nz’r + nxi) - h(nxT - nzi)- (4'3)

35



36 4. APPLICATIONS TO HUBBARD MODELS

We can solve this model exactly, at least in the “atomic limit” #4+,£; — 0. The free
energy per site is

U 1

f(Byp,h) = 5 Tk 3 log [2 cosh(ﬂg — Bu) +26U/2 cosh(ﬂh)] (4.4)

(it does not depend on the dimension). f(f3,u,h) is analytic in 3, u, h and therefore no
phase transition may occur. The magnetization is

oy B sinh(3h)
oh (Bs 1y h) = e PU/2 cosh(BY — Bu) + cosh(Bh)

It is an increasing function of h, which is zero at h = 0; this describes a paramagnetic
phase.

Since the potential is only on-site, there is a domain of thermodynamic parameters
with analyticity of the free energy, extending to low temperatures:

(4.5)

THEOREM 4.1. Paramagnetic phase.
There exists c1,ca > 0 such that the free energy is analytic in the union of the two
domains

Blltrl +1t,]) < e
Bt +17)

; < cg (provided min(u, U — pu) — |h| >0
min(u, U — p) — |h] ‘ ( )= Ikl >0)

and the corresponding Gibbs state exists in the thermodynamic limit, is thermodynamically
stable and exponentially clustering.

Analyticity in the first domain results from Theorem 3.2; the second domain is proved
in [Uel 1998] (and in the case ¢t = 0, i.e. for the Falicov-Kimball model, this was done in
[KL 1986]).

To study the effects of quantum fluctuations, let us rewrite the potential as

U poo 12
@g’h(nx) = 9 (nzT +ngy — U~ 5) — h(ngt —ngy) = C (4.6)

with C' = % +5+ %. We take for G the set of all configurations with exactly one particle

per site. G is an infinite set (for all finite A, we have |G| = 2/Al). Constants Ag and &
of Assumption 1 (page 27) can be chosen as

I
Ao = o [min(u, U = p) — [h]]
do = 2|h|.
Actually, (3.2) holds with the lower bound min(pu, U — ) — |h|; but Ag also appears in

Assumption 2, and it will turn out that the factor 1/2” is necessary). The list S of
transitions that we consider for the effective potential is

S={(A,A): A= (<z,y>,1) and A" = (<y,z>,1) for some z,y € Z", ||z — y|2 = 1}.
The effective potential is given by (3.9). We have ¢, 1 (1201 9fayy) = U if ng ) €
1(0,2),(2,0)} and g¢; 1 € G,y furthermore

1 if 9{zy} € {(Ta \l/)v (ia T)}

o f ol _
(93| CxroyrysCat 19(ay)) + {9ty | Gprertorcnt [9(ay)) = {0 otherwise.

(4.7)
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The effective potential is then

_t%/U if 9{zy} € {(Ta\l/)v (iaT)}

. _ 4.8
(o0} (9 fz)) {0 otherwise. ()

This interaction is nearest-neighbour and can be inscribed in blocks 2 x --- x 2. We take

R= % and choose for the physically equivalent interaction T
1 1
Tm(nU’(ac)) = 2_,, Z <I'5’}1(”’3;) + F Z ‘I]{ac,y} (n{x,y})- (4-9)
yeU'(z) {ﬁ’z}c\fﬂ(f)
y—xl|2=

The set D of dominant states has two elements, namely the two chessboard configu-
rations dV) and d®; if (—1)* = [/, (~1)%,

Loif (=17 =—1 v

d) —

x

t i (=) = —1
Loif (-1 =1

To find the Peierls constant A of Assumption 2, page 30, let us make the following
observation. Consider a cube 2 X --- x 2 in Z", that we denote C, and a configuration n¢
on it. First, only configurations with one particle per site need to be taken into account,
the others having an increase of energy of the order U. If n¢c € G¢, then all edges of the
cubes are either ferromagnetic, or antiferromagnetic. If a spin at a site is flipped, then
exactly v edges are changing of state. Since any configuration can be created by starting
from the chessboard one, and flipping the spins at some sites, we see that the minimum
number of ferromagnetic edges, for configurations that are not chessboard, is v. This leads

t2 . v— t2
to A = %77+ — |h|. Let us introduce e = 1 — 2 “Z|h|, so that A = ST TP €

v 2
H
The maximum of the expression in Assumption 3 is equal to max(tf,t%). If there

exists ¢ > 0 such that |t;| < |t|'™®, the bound of Assumption 3 can be chosen to be

by = %ﬁﬂ% . For Assumption 4 the expression has maximum equals to |¢;t+] and we

can take by = 21';€1U|tT|5 (this Assumption is not true in the symmetric Hubbard model;

the effective potential is not strong enough in order to forbid the model to jump from one
g to another ¢').

As a consequence of Theorem 3.6, the chessboard states are stable at low temperatures.

THEOREM 4.2. Chessboard phases in asymmetric Hubbard model.

_ 2
We assume v > 2,0 < pu<U, h < 2111%, and |t;| < |t4|'** with e > 0. Then
for any & > 0, there exist to > 0 and Bo(ty, h) < oo (limg, 0 Bo(t4,0) = oco) such that if
t1] < to and B = P,

o The free enerqy exists in the thermodynamic limit, as well as expectation values of

observables.
e There are two pure periodic phases, (-Y() and (-Y®), with exponential decay of cor-
relations.
. (->(1) represents a pure phase that is a small deformation of the first chessboard
configuration:
. z : r _
(ngr) (V) { > 1-46 l'f( 1)93 =1 (ng)V { <0 Z.f( 1):6 =1
<i if(-1)r=-1 > -6 if (-7 =1,
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and (->(2) represents a pure phase that is a small deformation of the second chess-

board.

To construct the two pure phases, one way is to add to the Hamiltonian a staggered
magnetic field

hV, = —(—1)xl~z(ng;¢ — Ngy).
Then
(Y = Tim ()P (h)
h—0+
and

()® = lim ()P (R),
h—0—
where (-) Pe"(h) is the thermodynamic limit of the state with periodic boundary conditions,
and Hamiltonian H®Mh = Vish + T + BV, V is no physical object. However, the notion
of thermodynamic stability 4s physical, and any possible instability has to be considered,

including staggered magnetization.

temperature

paramagnetic

antiferromagnetic

ty

FIGURE 4.1. Phase diagram of the asymmetric Hubbard model.

Notice that the Hamiltonian conserves the number of particles, and the magnetization
in both directions. Following [BKU 1997], one expects to have bounds on compressibility
coefficient and on susceptibility; namely, if £4 # 0,

< CeP (4.10)

0
5t + )

0 _d
5 (e = ma)h | < 7P (11)

In particular, these quantities vanish in the ground state (see the concluding remarks,
Chapter 9, for additional discussion).

Hubbard model with longer-range hopping. A natural question is whether the
approximation of considering hopping only betweeen nearest-neighbours is correct. In
other words, what happens if the particles have the posibility to hop onto next-nearest-
neighbours? The answer depends on the value of the longer-range hoppings; if they are
strong enough, other phases occur, namely planar and lamellar ones [GKU 1998|.

We consider the case of dimension v = 3; the hopping matrix is T = (T'4), where

() 1 : _ : _ . JE s
TA — t(f CCEO'CyO' lf A - (($7 y)7o-) WIth ||$ y||2 - \/57 .7 - 17273 (412)
0 otherwise.
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Actually, the quantum matrix is not a quantum interaction with connected supports, and
so does not fulfill our assumptions. This could be corrected by defining a new equivalent
interaction with connected supports. For simplicity, we only refer to [GKU 1998] where
the effective interaction is explicitely written in the case of lattice systems of hopping
particles.

The potential is as before given by an on-site Coulomb repulsion; to simplify, we set
U=1.

The list of transitions leading to the effective potential is

S={(A,A): A= (<z,y>1) and A" = (<y,z>,1),z,y € Z” with ||z—y|]» = 1,v2,V3}.
From (3.9) we obtain

_ t(]) 2 f - ’ ’ ’
Wy (00msn) {0 WP Hatay € (1,0, (1) (413)

The physically equivalent potential T may be chosen as to act on cubes of size 1 (i.e. with
8 sites). Candidates for minimizing Y are

o W W

chessboard planar lamellar enigmatic
(here “+” stands for “t” and “—” stands for “]”). The corresponding energies are
b 1)\2 3)\2
Ta(n?) = =3(11")” - 4(t”)

To(nl) = —(t")2 — 4(t)? — 4(tV)?
( lam) _ 2(t(1))2 . 4(t(3))2
T, (ng

ey — (t(l))2 _ 3(t%2))2 o 4(t%3))2.

It is not hard to check that for any t% ), tg), t%?’), the ground configurations are among
these four (and all obtained by rotations and reflections). Domains where they are ground
states are shown in Fig. 4.2; enigmatic configuration is present on the coexistence line
between chessboard and planar.

The zero-temperature phase diagram of the effective potential is not regular. How-
ever, it is possible to prove stability of chessboard, planar and lamellar phases, but the
transitions from one phase to another are not understood. Between the chessboard and
the planar phases, either there is first-order phase transitions, or there are two transitions,
one from chessboard to enigmatic, and one from enigmatic to planar. Transitions from
chessboard to lamellar, or planar to lamellar, are a mystery; it is even not clear if there
are phase transitions. An open question is whether enigmatic phase is present?

2. The Bose-Hubbard model

2.1. Introduction. Lattice models of interacting bosons have been considered for
different reasons. On the one hand they were used as models capturing important features
of such systems as, for instance, “He absorbed in porous media, or superconductors where
Cooper pairs are approximately bosonic quasiparticles. But more importantly, it was
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3 1
(tg )/tg ))2

3
4

chessboard
planar

MG

ST

lamellar

i 1‘ é (t (2)/t(1))

FIGURE 4.2. Zero-temperature phase diagram” of the asymmetric Hubbard model with
extended hopping. Enigmatic configuration appears in-between chessboard and planar

ones.

suggested that these systems could play an important role in the study of Bose-Einstein
condensation' and superfluidity in interacting systems.

Widely used is the Bose-Hubbard model [FWGF 1989] which describes bosonic particles
hopping on a lattice. The basic ingredients are a hopping term for the kinetic energy of
the bosons, and an on-site interaction proportional to the number of pairs of bosons at

the same site,
A= —t Z cy—i-c cx)—i-UgZ( uan (4.14)

<x,y>CA TEA TEA

Here the sum of hopping terms runs over nearest neighbours, and the on-site repulsive
potential per pair is 2Up; p is the chemical potential.

The zero temperature phase diagram was studied by Fisher et al. [FWGF 1989] (with
and without an additional random potential); their discussion suggested the phase diagram
according to Fig. 4.3. It consists of domains of incompressible phases with integer densities
near the ¢ = 0 axis, and a domain of the superfluid phase. The nature of the transition
between incompressible and superfluid phases is still not understood.

A natural way to extend the Bose-Hubbard model is to introduce longer-range interac-
tions between bosons. Let us consider the Hamiltonian defined on a d-dimensional lattice
ACZ' (v > 2) by

A= —1 Z cy—i-ccx)—i-UgZ S — Ny +ZUk Z nxny—uan.
<x,y>CA TEA k=1 llz—yll2=V%k TEA
lz—y| <1
(4.15)

The ground states are not difficult to find in two extremal cases, ¢ = 0 and ¢ = oo (i.e.
setting all the couplings Uy, to 0). The first case reduces to a problem of finding the ground
states of a classical system. In the latter case, the bosons are independent and a Fourier
transform diagonalizes the one-body Hamiltonian associated with the kinetic part; at zero
temperature the particles exhibit a Bose-Einstein condensation.

In the case of large enough Uy and U; > 2Us > 0, the zero-temperature phase diagram
of the two-dimensional version of (4.15) is depicted in Fig. 4.4. The translation invariant

'The Indian name “Bose” has to be pronounced “Bosh”; we thank Nilanjana Datta for this crucial
information. Please pay attention in the sequel to boshons and boshonic systems.
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phases p = n were also present for the on-site Bose-Hubbard model. Nearest neighbour
interactions are responsible for the occurrence of chessboard phases (with p = n + %)
These phases are not translation invariant — the system exhibits symmetry breaking.
Finally, phases with quarter integer densities with alternating rows of density n and n + %
are present because of next nearest neighbour interactions.

It is interesting to discuss the degeneracy of the classical (¢ = 0) ground states of
(4.15). While the integer and half integer phases have finite degeneracies, the quarter
integer phases do not. Taking, e.g., the phase p = 1/4, there is alternatively an empty row
without any boson and a row of staggered (antiferromagnetic) occupation pattern with 0

or 1 boson at each site. The degeneracy is roughly proportional to the exponential of |A| 5,
Theorem 3.3 applies in the darker domains, where the number of classical ground states
is finite. For quarter-integer densities, we can use Theorem 3.6, provided some hard-core
is added to the model, in such a way to have finite single site phase space.

In three dimensions the model exhibits even more interesting degenerated phases. With

well chosen parameters, the classical part of (4.15) has infinitely many ground states such
that their restriction to any cube is a configuration of the following form (up to rotations
and reflections)
Here all ground configurations have density 1/8. To evaluate their number, we can look at
all the possibilities of putting blocks 3 x 3 x 3 with one particle at the middle, in a given
volume. There must be no intersection, and no empty space between the blocks. It is
not clear how much possibilities there are; however, we can observe that given boundary
conditions (i.e. with fixed boundaries of the volume), there is at most one way to make a
covering without intersection nor empty space. This means that their total number does
not grow faster than the exponential of the boundary of the volume. In other words, there
is no residual entropy in this system.

For a different choice of parameters, the base cube is as follows,

The density is locked to 1/4 and the degeneracy is roughly proportional to the exponential
of |Al3.

At non-zero temperature we expect the degeneracy to be removed since a finite number
of particular configurations of alternated staggered rows have lower excitation energy; this

1
p=4
6Uo
p=3
4Uy superfluid
p=2
20y
p=1
0 t

FIGURE 4.3. Zero temperature phase diagram for the Bose-Hubbard model in two di-
mensions. Lobes are incompressible phases with integer densities. Our results hold in
darker regions near the ¢ = 0 axis (and also for low temperatures).
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1

— 5
p=z
20Uy + 8U; + 8U>
p=1
8UL + 8U2 superfluid
p=%
8
1
pP=3
8U>
p=1
0 t

FIGURE 4.4. Zero temperature phase diagram for the Bose-Hubbard model in two dimen-
sions with nearest and next nearest neighbour interactions. Incompressible (insulating)
phases of given density are expected to exist in grey regions. In the darker regions the
existence of such phases can be rigorously established.

theory of “dominating ground states” preferred by low energy fluctuations was presented
in [BS 1989]. It seems here that selected phases have alternating empty planes, and
chessboard of a given type. One should expect that they are stable against perturbations
with a small hopping term. On the other hand, the effective potential from quantum
fluctuations selects phases with alternating empty planes, and chessboard of alternating
types.

If a coexistence surface separates the domain in the ¢, 8 plane where thermal fluctua-
tions dominate from that where quantum fluctuations dominate, an interesting transition
occurs, driven by the competition between two different kinds of fluctuations. Another
possibility is that the transition goes through many other phases, maybe with a devil’s
staircase structure.

2.2. Results. We consider the two-dimensional case and make the following assump-
tions on the coupling constants.

Uy > 4U; + 4U,, U >2U09 > 0 (4.16)
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For each k € N consider the disjoint intervals
I, = {u : (2U0 + 8U; + 8U2)k‘ —2Up < pu < (2U[) + 8U; + 8U2)k},
Hy = {p: (2Uy + 8Uy + 8Us)k + 8Us < p < (2Uy + 8U; + 8Us)k + 8U4 },

Q) = {11 (2Uy + 8U, + 8UL)k < 1 < (2Uy + 8U; + 8U)k + 8U5},
Q) = {u: (2o + U + 8U2)k + 8U1 < i < (2Up + 8U1 + 8U)k + 8U1 + 8T}

The relevance of this decomposition is clear when comparing with the vertical axis of
Fig. 4.4.

Hereafter we give two theorems. The first one for the existence of phases in the
thermodynamic limit; we shall prove it in the sequel, using Theorem 3.4. The second
theorem is about the incompressibility of the quantum ground states; it was proved in
[BKU 1997]. These results do not cover the case of quarter densities, because of the
degeneracies of the classical ground states; we shall study this situation in the next section.
At high temperatures there is a unique translation invariant phase; the proof of this
statement is in [PY 1995].

THEOREM 4.3. Two-dimensional Bose-Hubbard model.
Assume that the coupling constant satisfy the conditions (4.16). Then for each p € Iy,
or i € Hy, there exists to(n) and Bo(p) such that for B > Bo(p), t < to(p),
e if u € Iy, there is a unique state that is close to the classical ground state |n)(k),
with ng;k) =k forallx € 7",
e if u € Hy, there are two states, each one being close to a chessboard configuration

with k particles on each site of one sublattice, and k + 1 particles on each site of
the other sublattice.

THEOREM 4.4. Incompressibility of ground state.
Assume that the coupling constant satisfy the conditions (4.16). Then for each p € I,
or u € Hy, there exists to(u) and Bo(pn) such that for B = Bo(u), t < to(p),
e if u € Iy, then
‘(nac>ﬁ’u - k‘ < Ce—cﬂ’
and
< el

0
‘@WIW,M
e if u € Hy, then for nearest neighbours x, vy,
[(3(ng + 1)) — (k+ )| < Ce™,

and
< e P

0
‘@(%(”z +”y)>ﬁ’“

The physical significance of the theorem may be more clear when considering the

relation between density and pressure. Recall that g—z = pa—z (fixed variables are the
temperature and the volume). Then we can derive the existence of plateaux in the graph

of Fig. 4.5.

This incompressibility theorem should not be mixed up with the uniform density the-
orem of [LLM 1993], although there is some overlap. The latter uses special symmetries
of the system and shows uniformity of the density with respect to coupling constant and
temperature, for a class of models of the Hubbard type (the “classical ground states” may



44 4. APPLICATIONS TO HUBBARD MODELS

strong interactions

,,,,,,,,,,, weak interactions

p

FIGURE 4.5. Graph of the density as a function of the pressure, at zero temperature
(and in the case of the Bose-Hubbard model with only on-site interactions).

be infinitely degenerate). However, it is not uniform with respect to the chemical poten-
tial, because only for special values of the latter the system has the necessary symmetries;
the compressibility coefficient does not vanish in general.

In the case of small hopping, there is one (or two) pure state with exponential de-
cay of correlations. These states are thermodynamically stable against an external field
Y oac A(cl- +c¢;), and therefore these phases are not superfluid. On the contrary, a system of
free bosons without interactions features Bose-Einstein condensation. The situation here
is analogous to Mott insulator transition in fermionic systems, where an insulating phase
may appear because of the interactions between fermions — in contrast to the situation in
band theory, where the insulating phase is due to an external periodic potential. So it is
generally said that the Bose-Hubbard system forms a Mott insulator in the incompressible
phase.?

PROOF OF THEOREM 4.3. Let us first establish the Peierls condition (2.12). The
classical part of the (two-dimensional) Bose-Hubbard Hamiltonian (4.15) — with chemical
potential — may be written as a block interaction over plaquettes of 4 sites,

Op(np) = Z %(Ugni — Upng — png) + 3U4 Z ngny + Uz Z ngny.  (4.17)
zEP z,yeP z,yeP
lz—y|=1 |z—y|=v2
With & an integer we introduce new variables, n, = k + m,, and with ®p(k,mp) =
®p(np), a straightforward calculation leads to

Op(k,mp) =Cy + Z i(Uomz. — Upmy — ppms) + %Ul Z mamy + Uz Z MaMy,
r€EP T, yeP T, yeP
lo—yl=1 |o—y|=v2
(4.18)

where we defined Cj, = 1Uy(k? — k) — Tuk + 4k*(Uy + Us), and
pr = i — (2Ug + 8U; + 8U2)k. (4.19)
In the following, we show that, for a given k,
a) if pg € [—200,0], mp = (3 }) minimizes ®p(k, mp),
b) if up € [0,803], mp = (}9) (and the three obtained by rotation) minimizes
(I)P(ka mP)7

2We intentionally avoid the term “Mott insulating phase” because stricto sensu it is not a phase: the
fact that a system can be considered to have Mott insulator behaviour depends actually on the chosen
microscopic description.
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c) if uy € [8U2,8U1], mp = (}9) (and the other obtained by rotation) minimizes
@P(k,mp),

d) if py € [8U1,8U148Us], mp = (% (1)) (and the three obtained by rotation) minimizes
@p(k,mp)-

Clearly, from this and (4.19) we obtain the classical ground states for all > 0 [and
in the case pu < 0, we see immediately in (4.17) that n, = 0, for any =, minimizes ®p(kp)].

For the point a), let us introduce a such that pp = —2Uy(a + %), it is easy to check
that

Op(k,mp) = Cp+ (JU =T = T2) Y (my +a)”

zeP
+ 10, Z (my + my + a)® + 3Us Z (mg +my +a)?,  (4.20)
T,yEP T,yepr
[z—y|=1 lz—y|=v2

and this is minimum for m, = 0, for any = € P, when a € [—3, 3], i.e. uy € [—2U),0].
Moreover, we obtain a Peierls condition if uy # —2Uj, 0.
Point ¢) is similar; we define a such that %uk = Uy + Us — 2a(Uy — Us); in this case

Op(k,mp) =Cf + (100 — U1 + Uz) Y (mg — 3)?
zEP
+ (A0 = 502) Y (ma+my —1+0)2 +Us(D mg —2+a)°. (4.21)
IayEP reP
lz—y|=1

(§9) is ground state when a € [—3, 3], i.e. uy € [8Us,8U7] (recall that Uy > 2U3). The
Peierls condition is also straightforward.

Finally, we show that () is ground state for p; € [0,8U] and (7' J) for puy €
[—2Uy — 8Us, —2Uy]. With e = +1 in the first case and € = —1 in the second case, we have

®p(k,mp) = Ci + (;Us — Uy + Us) Z(mz — 1¢)?

TEP
+ (101 — £U0) Z (mg +my — %5)2 + UQ(Z my — e+ a)2 (4.22)
InyP zeP
lz—y|=1

where a = 3 — yu,/8U> in the first case, and @ = —3 — (uy, +2U;)/8U> in the second case;
the condition a € [—3, 3] yields the intervals for p.
Theorem 4.3 is then a consequence of Theorem 3.4.

O

2.3. Quarter integer densities and effective potential. We need a finite single
site phase space when studying the quantum fluctuations. This is the reason why we
choose Uy — oo in (4.15). This amounts to consider a new model with 2 = {0,1} and
with an interaction on plaquettes

Dp(np) = %Ul Z ngny + Us Z NNy — %u Z Nz, (4.23)

T, yeP T, yeP reEP
llz—yll2=1 llz—yll2=v2
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and ®4 = 0 if A is not a plaquette. When 0 < p < 8Us, we have from (4.22) that ®p(np)
is minimum if np = (} J), or any configuration obtained from (}J) by rotation. Hence
we define

G=4.n€{0,1 :np € , , , for any plaquette P
{ne 0,y inp e {(58),(80):(89).(28)} }

(G is here the set of ground states of the interaction ®). Since ®p(np) — ®p(gp) =
i min(u, 8Us—pu), for any np ¢ Gp, gp € Gp, Assumption 1 holds with Ay = % min(u, 8Us—
p) and dy = 0 (the factor 5,
below).

We take as sequence of transitions for the smallest quantum fluctuations

rather than i, has been chosen in view of Assumption 2, see

S={(A,A"): A=<z,y> and A' =<y,z> for some z,y € Z?, ||z — y||z = 1}.

The effective potential follows from (3.9). Let Py = Upnys 120 and more generally we
denote by P any 3 x 4 or 4 x 3 rectangle. Up to rotations and reflections, we have to take
into account five configurations, namely

010 010 101 101 100
000 000 000 000 001
010 101 010 101 100
0(340 000 0000 000 001

B b D E
g g5 95 9 g5

We find Up(gy) = —12/201, Up(gls)) = —12/4Us, and Up(gy)) = Up(gh)) = Up(gh)) =

0.

We can choose R = 2; U'(z) is a block 4 x 4 centered on (21 + 3,72 + 3). The
configuration gi/(;) € Gy (g are (up to rotations and reflections)

1010 1010
0000 0000
1010 0101
0000 0000
gU’(z) gU’(I)

We choose for T

1 ~ 1
To(nr@) =g > dp(np) + 5 > Tp(np), (4.24)

PCU'(z) PCU(x)

with i)p(np) = ®p(np) — mingeq Pp(gp). Which configurations, among the ones gener-
ated by ¢(® and the ones generated by g®) . allows for more quantum fluctuations? The
effective potential yields

2
(@) y_ _t
T ( U?I(I)) = o,
2 2
(b) _ t t
Talor) = =30, ~ 505"

We see that the set of dominant states D is formed by all the configurations generated by
g® (|D| = 8). Heuristically, there is more freedom for the bosons to move in g(*), since
they can go to a nearest-neighbour site and feel a small repulsion of strength Us; as for
bosons of the configuration ¢(*), any nearest-neighbour move brings them at distance 1 of
another boson, and they feel a bigger repulsion Uj.

As a result we can choose A = t?(ci- — 1) in Assumption 2. The maximum of the

8U» 4U,
1 L)*l
8U» 4U

g # ¢’ means that g and ¢’ must differ on a whole row, and the matrix element is zero for
any finite m.

expression in Assumption 3 is by = t2( . In Assumption 4 by = 0, because
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These eight dominant states bring eight pure periodic phases, (-)(),..., (-)(®): each
one can be constructed by adding a suitable field in the Hamiltonian (e.g. the projector
onto the dominant state).

THEOREM 4.5. Hard-core Bose-Hubbard model.

Consider the hard-core Bose-Hubbard model on the lattice 72, and suppose Uy > 2Us
and 0 < p < 8Us. There exist ty > 0 and [y(t) < oo (limy_g Fy(t) = 00) such that if
t < toand B = Po,

e the free energy exists in the thermodynamic limit with periodic boundary conditions,

as well as expectation values of observables,

e there are 8 pure periodic phases with exponential decay of correlations.

Each of these eight phases is a perturbation of a dominant state d, and the expectation
value of any operator is close to its value in the state d, see Theorem 3.6 for more precise
statement.
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CHAPTER 5

Cluster expansions

Cluster expansions (or swarm expansions!) appeared in Statistical Physics in the 30’s
(see Chapter 3 of [Pfi 1991] and references therein) — we met the works of Mayer and
collaborators in the prolog. Its use in classical lattice systems began with the study of
polymer models [Kunz 1971]. A proof of the convergence of the cluster expansion was
given by Gruber and Kunz [GK 1971]. We present two approaches. The first one is
inspired by Kotecky and Preiss [KP 1986]; a nice feature consists in its independence with
respect to detailed properties of the bees. The proof of Proposition 5.1 that we give here
is due to Dobrushin [Dob 1994]. The second approach follows Pfister [Pfi 1991], himself
following Brydges’ lectures [Bry 1986]. It allows for a continuous set of bees.

The bees sting, but also produce honey; similarly the swarm expansion is rather
painful, but brings very nice results in Statistical Physics. We shall see later in this
chapter that in all reasonable lattice models, a unique thermodynamic phase exists at
high temperature.? All the perturbative approach to the theory of first order phase tran-
sitions (the Pirogov-Sinai theory) is actually based on cluster expansions — even though
we shall see in Chapter 6 that it is certainly more than just an application.

1. The hive or the abstract polymer model

Let B be the hive, i.e. the set of bees, that we suppose to be finite. A reflexive and
symmetric relation ¢ is given on B; we say that b,b’ € B are incompatible if bib’, otherwise
they are compatible. A set of bees B C B is called admissible if its elements are mutually
compatible. The partition function of a hive B is

Z® = > Jlw® (5.1)

BCB beB
B admissible

where w : B — C is called the weight of the bee b. If B = &, we set Z(@) = 1.

Let C = (b1,...,bn), bj € B, and consider the graph G(C) with n vertices and with an
edge between different vertices ¢ and j whenever b;ub;. C'is a swarm, or a cluster, if G(C')
is connected. Then if the weights w(b) are small enough, we have the following expansion.

!The name “swarm expansion” is the English translation of “développement en essaims”, the French
expression for “cluster expansion”. Hence bees and hives. As for Dobrushin, he chose to expand animals
and herds of animals, and he obtained gangs of animals [Dob 1994].

2Typical results of cluster expansions are the analyticity of free energies; but they also find a use in
probability theory, to prove e.g. central limit theorems. Assumptions can be weakened in this situation
[FFG 1998].

49
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PROPOSITION 5.1. Swarm expansion.
Let wp,v : B — Ry two positive functions on bees, with wy(b) > 0 for all b € B, and
assume the following inequality:

1 — wo(b) exp{ D wo(b’)v(b’)} > e wo®)(®) (5.2)
b’Lbb,,b’;éb
for any b € B; then if lw(b)| < wo(b) for all b € B, we have
log Z(B) = > a7 (), (5.3)

C=(b1,..,bn), b EB

and ®T(C) satisfies the bound

®T(C wo(by)o(b;) TT 12 5.4
| Z o (»j]:Ile(bj) (5.4)
Before proving Proposition 5.1, we establish a useful lemma.3
LEMMA 5.2.
If the inequality (5.2) is valid, then
Z(B)
1 < .
o Zgry| < D wolbhv(d (5.5)

bEB\B/
for any finite B,B’ with B C B.

PROOF. By induction on the number of elements in B. The lemma clearly holds if
B = o or if B = B. Otherwise there exists at least one bee b() eB\B.

Z(B) Z(B)  Z(B\ {bo}) Z(B Z(B\ {bo})
lo = ‘lo ‘lo ‘ + ‘1 .
s 7m) ZB\{b})  Z(B) ZB\ b)) {bo} T Z®)
(5.6)
From the induction assumption,
Z(B\ {bo})
g =gy 7| < 3 wolb(b): (5.7)
bEB\B'
b£bo
the lemma is proved if we can show that
Z(B)
log ——2)__ ‘ < wolbo)v(bo). (5.8)
‘ Z(B\{bo})
From the definition (5.1) of the partition function, we have
Z(B) = Z(B\ {bo}) + w(bo)Z(Bo) (5.9)
with By C B\ {bo} the set of all bees compatible with by. Therefore
Z(Bo)
Io 7‘—‘10 1+ w(b ! 5.10
sz | = [0 0 7 ) 10

3The lemma is slightly stronger than the one of [Dob 1994] and is needed so in the proof of Proposition
5.1. This was pointed out by Kotecky.
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The induction assumption implies

‘w(bo) Z(Bn) ‘

ZB\ {bo}) (bﬂ)eXP{ > w0(b)v(b)}<1 (5.11)

bEB
bubo.,b£bo

[the last term is strictly smaller than 1 because of (5.2)]. For any 2,2y € C, |z| < |20] <1,
it is not hard to check that (for the first inequality, simply expand the logarithm with
Taylor series)

log(1 +2)] < —log(1—|z]) < —log(1 — |z0l).
As a consequence

‘1og%‘ < —1og(1 —wo(bo)exp{%:wo(b)v(b)}) (5.12)
and the RHS is smaller than wq(bg)v(bg) because of (5.2). O

PROOF OF PROPOSITION 5.1. log Z(B) may be viewed as a function of the numbers
w(b), b € B. More precisely, let w = (w(b))pep, and

Fe(w) : U = {w(b) € C: Jw(b)] < wo(b)} = C

w— Fg(w) =log > ] w). (5.13)
BCB beB
B admissible

Fg is the logarithm of a polynomial in {w(b),b € B} which has no zero in U because of
Lemma 5.2. Therefore Fp is holomorphic and we can write its Taylor serie:

=Y > =Tl b)) [Jw(y) (5.14)
n! o

n > 1by,..bnCB

@T(bl,...,bn):{‘

Let us see that ©'(by,...,b,) is zero if (by,...,b,) is not a cluster. Let B = {by,...,b,}
(|B| < n if (by,...,b,) contains many times a same bee) and decompose B = B; U By,
By, By # O, in such a way that any element of By is compatible with any element of Bs.
Observe that we can substitute F(w) by Fp(w) in (5.15), and that from (5.13),

Fp(w) = Fp, (w) + Fp,(w).

Since Fp, (w) does not depend on {w(b) : b € By}, its contribution vanishes in (5.15); the
same with Fpg,(w).
Finally, the bound (5.4) can be obtained by the use of Cauchy formula. Let oy denote

with

3

?bj) }FB(w)‘ . (5.15)

— w=0

the number of occurences of b in (bl, .., by); then
_dw(b)
oT(bi,...b n' H — 7{ o }FB(w). (5.16)
Using Lemma 5.2, we get
|Fp(w)| < > wo(b (5.17)
beB

Taking the modulus in the integrals, we find the bound (5.4). O
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2. The polymer expansion

The previous approach is beautifully abstract and the proof is very elegant. It has
however an important limitation: the set of bees must be finite, while we shall face a
continuous one in Chapter 8. So we present an alternate theory of swarm expansion, that
we refer to as the polymer expansion. It is mostly a simplification of the Chapter 3 of
[Pfi 1991]: we restrict to the case where the polymers interact only through a condition of
non-intersection (hard-core). Let X the space of polymers. We note ¢ € X a polymer, and
suppose that a measure has been defined on X; if f : X — C is a measureable function,
we write [, d€f(£) the integral of f with this measure. T C R” is a discrete or continuous
subset of R”, with a notion of connectedness; if A, B C T, we note A M B the property
“A U B is connected”.

The polymers have a support Supp& C T and a length |£| > 0 (the bees had not), and
a weight w : X — C.

As before, we write C' = (&,...,&,), & € X; SuppC = Ugee Suppé and |C| =
> ¢cc €] G(O) is the graph with n vertices and with an edge between different vertices
and j whenever Supp§; @ Suppé;. C is a cluster whenever G(C') is connected. We define
the truncated function ®T(C) by

27(0) = " (G(0) [ wl) (518)

with
1 ifn=1
226 egiges (‘ T [Supp&; M Supp é}-]) ifn > 2,

where the sum is over all connected graphs G of n vertices. Notice that ®T(C) =
whenever C is not a cluster. It is natural to conjecture that o (G(C)) = @' (&1,..., &,
introduced in (5.15).

We start with a proposition that gives the polymer expansion in the simple case where
the polymers are connected subsets of Z”. Here T = Z”, Supp& =&, and [¢| = | Supp{].

p1(G(0)) = { (5.19)

0
)

PRrROPOSITION 5.3. Polymer expansion.
Let A C Z", |A] < o0, and X(A) = {{& C A : £ connected}. A complex function
w: X(A) — C is given, that satisfies

()] < e (5.20)
Then if v > 2v + log 23, we have

g >, [[wen= > %) (5.21)

{&1,.-8n} J=1 C=(&1,-6n)
& CALTE; §iCA

with ®T(C) the truncated function defined in (5.18).
For any ¢ < oo and § > 0 there exists vy < oo (depending on v, ¢ and 0) such that if

Y > Y0,
Yo eT(e))ed? < 6 (5.22)
C,Supp C>zx

for any x € Z¥.
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Suppose furthermore that w depends on a parameter p € U C R, w = wh, and that
we have a bound on the derivatives

0
‘3/%
Then for any ¢ < 0o and § > 0 there exists vy < oo (depending on v, ¢ and §) such that
ify = o,

W“(ﬁ)‘ < e DL 1<i<p (5.23)

> e

Acl < 6 5.24
C,Supp C>zx

for any x € Z".

When considering the exponential decay of correlation functions, and in many other
situations, one may have to estimate a sum over clusters with length bigger than a number
¢. From (5.22) we obtain

> 2T@O) < e Y [@T(0)]e!

C,Supp Coz,|C| > £ C,Supp C3>z
< de ¢, (5.25)

for any ¢ < oo and 0 > 0, by choosing « large enough (depending on ¢ and §, but not on
?).

Actually, the motivation to state Proposition 5.3, that is equivalent to Proposition
5.1, is double. First because we shall use it when dealing with contour models, second
because its proof follows from the more abstract Proposition 5.4, that we can now better
understand.

PROPOSITION 5.4. Generalized polymer expansion.

Let X be a measurable space of polymers, and w : X — C the weight. Assume that
the weight is measurable, as well as the indicator function 1 [Supp & M Supp £j]. Define
®T(C) by (5.18) and (5.19), and write [dC =", >1 [indér ... dEy. Then if

/ dC|BT(C)] < oo, (5.26)

we have the polymer expansion, that is,
1 n

exp(/ dC{)T(C)) =1+ Z m/x dé; . d{n[ w(fj)] H I [Suppfi mSuppfj].

n > 1 . n —

j=1 1<J

(5.27)

This proposition will be useful in Chapter 8, in a situation with more complicated
polymers than just subsets of A C Z7.

PROOF. We start with the RHS of (5.27). Since
I [Supp&; fSuppé;] =1 — I [Supp&; @ Suppé;],
we have

IT T[Supp& dSuppg;] =" ] (—T[Supp& mSuppg;)) (5.28)

1<i<j<n G e(i,j)eg
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where the sum is over all graphs of n vertices, not necessarily connected. We can decompose
G into connected components, namely G = {Gy,...,Gr}; Go, 1 < £ < kK, is a connected
graph with my vertices, and m; + ... + my = n.

The RHS of (5.27) can be rewritten

sy iyl oy H/d& a,

n>1" k= (G1y...Gk

[H ] [T (—I[Supp¢& mSuppg;]). (5.29)
j=1

l,])Egl
The sum over seqences (Gy,...,Gi) can be done by first summing over my, ..., my with
mi+...+my = n; next by partitionning {1,2,...,n} into k sets with mq, ... , my elements
(there are W different partitions); then by summing over connected graphs in each

set. Therefore

| k
=1 Y Zk, 3 7m1!f.mk!g/d§f...dgﬁw

n > 1 mi,...,mg > 1
mi+..+mr=n

[Hw €] > TI (-1 [Supp& mSuppg;])

gl 6( 9])Egl

> [t g} (530)

m>1

- Zkv
k>1

where we have used the definitions (5.18) and (5.19). We get the LHS of (5.27).
It s clear that all these expressions are convergent: condition (5.26) implies absolute
convergence of the series in n of (5.30), and the same with (5.29) and (5.27).

U
In view of the proof of Proposition 5.3, we need a lemma.
LEMMA 5.5.
0 < ()" 'e"(G(0) < > [T 1 [Suppé& mSuppg;].
T:tree of n vertices e(i,j)ET
As a consequence, o7 (G(C))| < n"72, since n"~2 is the number of trees with n vertices.

PROOF. In this proof we consider only graphs with n vertices, and the notation G C G’
means that the set of edges of G, is a subset of the set of edges of G'.

The following property is true: to any tree 7 we can associate a graph G*(7) such
that

¢ GT)DT;
e the sets E(T) = {G : T C G C G*(T)} constitute a partition of the set of all
connected graphs.

This can be proven by defining a procedure that attributes a tree to each connected graph,
by deleting some edges [Pen 1967, Pfi 1991].



2. THE POLYMER EXPANSION 55

The sum over all connected graphs in (5.19) can be done by first summing over trees
T, then summing over graphs in £(7).

=> > II (~1[Supp& mSuppg;])

T Ge&(T)e(i,j)EG

= Z [[ (~If[swpé&aswpg]) JI (1 1[Suppé mSuppgy]).
e(i,j)eT e(i,J)eG*(T\T
(5.31)

The bound is clear, since the last product is smaller or equal to 1.
O

PROOF OF PROPOSITION 5.3. It is enough to prove the last two claims, since (5.21)
follows from (5.22) with ¢ = 0 and Proposition 5.4.
We estimate (5.22) using the Lemma 5.5.

n

> ot < ¥ Y ([l 0 T tlang)

C,Supp C3z n>1¢,. ,fn J=1 T e(ij)eT
ISEr
(5.32)
Let 41, ..., iy the incidence numbers of a tree with n vertices. We first proceed with the

summation over polymers k # 1 for which 7, = 1; in the tree 7, k shares an edge with a
vertex m, and this means that & M &,,, so that we find a bound

Z 67(770)|£k| < 2V|§m| Z e*(’Y*C)‘gk‘ . (533)
Ep:lpMEm o
Then
Yo 2Tl <
C,Supp C>zx
< Z |Z(Z (2v|€1]) 21 (7*0)\51\) H(Z(2V|§j|)zjflef('yfc)\gﬂ)‘ (5.34)
/1 T ¢&idz j=2 ¢3¢

The sum over trees 7 can be done by first choosing the incidence numbers, then summing
over the trees. There are

(n—2)! < (n—1)!
(i1 — ) (i — DU T gl — D) (6 — 1)!
trees with incidence numbers 1, ... 4,. Summing now over the incidence numbers, we get
ST < 3 (Ze (r-c-20) |€|) (5.35)
C,Supp C3z n>1 &z
From (2.1), we have
—(y—c—2v) 9
—(y—e—2w)[¢] © -
e < T =g T & (5.36)

&

e can be put as small as necessary by taking « large enough; this proves the bound (5.22).
To prove (5.21), we take ¢ = 0 and & < 1; this brings the condition v > 2v + log 2.
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The bound (5.24) may be proven in the same way; since

n

0 1 0
oT(C) = —=¢"(G(C)) ()] 5 —w(&j), (5.37)
we have
‘8iiq>T(C)‘ s (n_ll)!w(g(c)”ﬂe_”_%’- (5.38)

Retracing the steps leading to the first bound, we arrive at

Y aTo) el < Yon(Y e et )" (5-39)

C,Supp C>zx H n>1 &

2

and since 5 1 ne" = ¢/(1 — €)*, we obtain the bound if v is large enough.

3. High temperature expansions

We prove Theorem 3.1 by means of high temperature expansions. The idea is to
obtain a convergent expansion for the free energy in terms of clusters, with a weight that
is analytic in 8 and pu.

- T (=B)"
Zy=Tre PXaca®i = Y~ )" = Tow, T T (5.40)
m>0Aq,..,AnCA

To each choice of Ay, ... A, corresponds a choice of k connected, disjoint sets Ay, ..., Ag.
We first sum over sets {.A;}, then over compatible {A;}; observing that [Ta,,Ta;] = 0
when A; C Ay, Aj C Ag and k # ¢, we find

2= Y Y Y X Y

{-Al,---a-Ak-} mp > 1 A%,...,A}nl mg > 1 Alf,...,Alﬁnk

Z@Aj UiAZ-l =A1 UiAi-C:.Ak
(_5)m1+...+mk (ml 4o +mk)'
Try, TH, ...TH TH,...T¥ . (5.41
(my 4+ ... +mg)t mqlomy! Ha Af Ay © AT Ak ( )

We call A a polymer and define its weight:

- (=B)"
pA) =5 S % — Tray T% ... T% . (5.42)
m>1A1,...,Am )
U;Ai=A

The partition function takes the form

k
Zy =S N [ e4), (5.43)

{A1,. A} i=1
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where the sum is restricted to sets of disjoint polymers. In order to apply our swarm
expansion, we must check that the weight of the polymers is small.

p(A)] < §7Hlemel Al Y™ % S S [nalTh T )| et A

m>1""" A1,.,AnCAn, QA
< oY Dy ]
I m! A
m>1 Adz
< oDl (5.44)

since 35 45, I T4 el < 1.
Analyticity of the free energy follows from Proposition 5.3. Concerning the expectation
values of local operators, we define Ak to be a polymer containing Supp K, and

_ —-B)"
m>1 At,Am ’
U; A;USupp K=Ag

(5.45)
Proceeding as before, we find a bound
lpr (Ag)| < || K||ecIBupp KT em(em DAl (5.46)
Next
" k
TrKe PXacaTh = glAl Z/’K(AK) Z HP(Ai)’ (5.47)
.AK {Al,Ak} i=1
Aif Ak

and from cluster expansions we get
(Kon = pxA)en{- > aT(O)}; (5.48)
Ax C,Supp CmAg

in this expression, the sets Ax and clusters C' are in the volume A. The thermodynamic
limit clearly exists, since px and ®T have exponential decay.
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CHAPTER 6

The Pirogov-Sinai theory of first-order phase transitions

1. Generalities

If we observe a thermodynamic system at a point of first-order phase transition, we see
large domains with pure phases inside. Any local measurements would reveal one of the
phases, i.e. there is coexistence of different phases. For instance, consider molecules HoO
at temperature 100°C (and at atmospheric pressure); in a system close to equilibrium, we
see bubbles of gas inside of the liquid, or dropplets of liquid inside of the gas.

Bubbles or dropplets are essentially spherical — or they would be in absence of grav-
itation; this means that the system tends to minimize the boundary between liquid and
gas. More precisely, the surfaces that separate liquid and gas yield a surface tension.

Phase coexistence and surface tension are two phenomena related to first-order phase
transitions.

In classical lattice models of Statistical Physics, there are mathematical objects leading
to the existence of a surface tension at low temperatures, the contours. These objects are
one of the main ingredients of the Pirogov-Sinai theory. We introduce in Section 4 an
abstract contour model, i.e. a system of Statistical Physics where configurations are given
in terms of sets of contours, and the weight of a configuration is a product of activities of
contours.

Using two properties on the contours, namely an energy estimate: the activity of
a contour is exponentially small with respect to its size, and an entropy estimate: the
number of contours of given length, containing a given site, goes at most exponentially
with its length, the free energy of the system can be expressed as a convergent serie of
clusters of contours. While the second property is true independently of thermodynamic
parameters, the first property can be generally proven only when the inverse temperature
0 is larger than some constant (.

Let us consider a system for which the thermodynamic parameters are 8 and u € U C
R®. p may be a chemical potential, or an external magnetic field, or both of them, or ...
The relevant quantity for Thermodynamics is the free energy f## (more precisely: f*# is
the free energy per site in the infinite volume limit), and we are interested in its analytic
properties. Indeed, non analyticity of f*# is related to phase transitions — if 6%1, B s
discontinuous at g = ., then p. is a point of first-order phase transition.

U decomposes into regions where the free energy is analytic; such a decomposition
is called a phase diagram. Hereafter we restrict our considerations to systems at low
temperatures, starting the study by the zero-temperature case.

Zero-temperature phase diagram. The limit limg_,, fHB = ef' is the ground
energy of the system. In the framework of the Pirogov-Sinai theory, we give ourselves a set
of reference configurations G, |G| = p, which are possible ground states of the system: for
all u € U, we suppose that the set of periodic ground states G* is a subset of G. Therefore

el = et (g) with ¢ € G¥. Thermodynamic quantities are associated with derivatives of
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60 6. THE PIROGOV-SINAI THEORY OF FIRST-ORDER PHASE TRANSITIONS

a thermodynamic potential, here ef'. Assuming that the energy of a given configuration
is analytic in g (often it is a linear function), we have that at zero temperature, the free
energy el is analytic on each domain

M>(g9) ={neU:geG"}.

In Thermodynamics one often considers lines in the space of thermodynamic parame-
ters, and the natural question is whether the changes of observables are smooth. Consider
here a line [t1,t2] O t — wp(t) € U, such that there is t. € (¢1,t2):

{gN if t € [t1,1c)
G[J,(t) — {9(1)79(2)} if t = tC
(g if t € (te, ta).

This describes a first-order phase transition: since et (g(1)) £ e#(1) (¢(2)) if t £ ., we
have in general a discontinuity of the derivatives of eg(t) = min(e#® (g1, e#() (¢(2)) at
He = p’(tc)'

Low temperature phase diagram. The discussion above concerns the case of tem-
perature zero, and its relevance for Physics is not obvious. The aim of the Pirogov-
Sinai theory is to show that it remains true in a domain of (inverse) temperature [Gy, co].
Namely, we shall construct p different functions f#*#(g), g € G, such that

e mingcg f*B(g) is the free energy of the system;

o limg,o f*7(g) = e*(g), g € G;

e fHP(g) is analytic in the domain

M (g) ={peUd: f*i(g) = min 7P (g}

The discussion of the case of temperature zero then extends to small temperatures.
Under the further assumptions that the zero-temperature phase diagram is linearly regular
(see Chapter 2), it can be proven that the phase diagram at inverse temperature (3 is a small
deformation of the zero-temperature one. Furthermore, if f*?(g) is minimum, the typical
configuration is ¢ everywhere except for small islands. More precisely, the expectation
value of observables is close to the value in the ground configuration g, and correlations
decay exponentially fast.

The functions f*P(g) are called metastable free energies, a name that comes from
their construction. We shall consider restricted partition functions, where only “small”
excitations are allowed. This “smallness” is a notion that depends on the difference
fB(g) — ming g f#P(g") — the smallest the difference, the weakest the condition. If
f*P(g) is minimum, there is no restriction and it coincides with the true free energy.

To explain the notion of metastability, let us suppose that some stochastic dynamics
has been defined on our lattice system (for instance a Glauber one). Consider a line in
the thermodynamic parameters [t1,t2] O ¢t — u(t) € U as before, i.e. there is t. € (t1,t2)
with

M ({g(D}) if ¢ € [t1,tc)
p(t) € S MA({g), g®}) ift =t
M ({g@}) if t € (te,to].

Here, for Q C G, MP(Q) = NyegM?(g) \Ug¢Q9ﬁﬂ(g), and MP(g) was defined above.
We start with ¢ = ¢; and let the system evolve for a long time. The typical configuration
is g1 essentially everywhere. Increasing the value of ¢ up to %, there is no substancial
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change. Crossing t., however keeping ¢ — t. small, the system remains for a while in the
phase ¢(Y), with small excitations appearing and disappearing. This is a metastable state,
that will be eventually destroyed when a big excitation will appear; this excitation will
not disappear, but on the contrary will continue to increase, to cover a large domain. The
whole volume will no longer be in the state g — actually, we shall obtain a phase close
to ¢, after a sufficiently long time.

The name of “metastable free energy” for the energy of a model where only small
excitations are allowed, the restriction depending on the “instability parameter” f#*f(g) —
ming i fAP(g'), is judiciously chosen.

These ideas started with Peierls more than sixty years ago [Pei 1936]. He introduced
the notion of contour for the Ising model, and showed that the magnetization is strictly
positive at low temperature. Since it is zero at high temperature, this implies a phase
transition with symmetry breaking when the temperature is decreased. Strangely, the
controversy about the description of phase transitions did not make use of this result.!
Peierls’ ideas were ignored during thirty years, until Dobrushin and Griffiths [Dob 1965,
Gri 1964]. The symmetry between the phases is that of spin flips. The situation when
this symmetry is a translation was treated in [Dob 1968]. More involved is the case with
reflection or rotation [Hei 1974].

The Peierls argument does not directly apply to systems where the ground states are
not related with some symmetry. The generalization to this situation was done by Pirogov
and Sinai [PS 1975, Sin 1982]. Actually, it is more than a technical extension — the
notion of metastable free energies, for instance, acquires its full meaning when the thermal
fluctuations are different for different phases. It also makes useless the complications of
[Hei 1974].

The theory benefitted of improvements from the Prague School [KP 1984, Zah 1984,
HKZ 1988]. The extension to systems with complex interactions was done in [BI 1989], in
view of an application to fields theory; the paper is based on ideas of Zahradnik [Zah 1984]
and constitutes a useful working reference. There exist two reviews by Kotecky; [Kot 1994]
is a pedagogical study of a simple model, while [Kot 1995] contains more general discus-
sion.? A presentation of the Pirogov-Sinai theory with statements and explanations can
be found in [EFS 1993].

Among the extensions of the Pirogov-Sinai theory, there are studies of interfaces
[HKZ 1988, HZ 1998], potentials with long-range interactions [Park 1988], systems with
degeneracies and residual entropy [GS 1988], systems with degeneracies for which the
phases are stabilized by the thermal fluctuations [BS 1989], finite-size scaling [BK 1990,
BK 1994], continuous spin models [Zah 1998]. Phase diagrams with an infinite num-
ber of ground states on a line of coexistence at temperature zero were considered in
[BJK 1996, NOZ 1998]; in some situations, the line is absent at finite temperature, and
the free energy is analytic.

In the domains of the phase diagram where a single state has minimal metastable
free energy, the stability of the corresponding Gibbs state with respect to any boundary

!The relevance of lattice models for understanding phase transitions seems to have been considered
as very poor. Kramers already noticed in 1936 that for different values of the magnetic field, the thermo-
dynamic limit of the free energy may yield functions that cannot be joined analytically [H. A. Kramers,
Commun. Kammerlingh Onnes Lab. 22, suppl 83, 1 (1936)]. This is described in M. Dresden, Kramers’s
contributions to Statistical Mechanics, Physics Today, September 1988.

It also includes a beautiful 3D picture, showing the magnetization of the Ising model as a function
of temperature and magnetic field.
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conditions was shown in [LM 1997]. Here we prove the “thermodynamic stability” of the
Gibbs states with respect to small perturbations, periodic or not (see Theorem 6.4 for
precise signification).

Finally, let us mention the applications to quantum systems, [Pir 1978, BKU 1996,
DFF 1996, DFFR 1996, BKU 1997, KU 1998], that we discuss in Chapters 7 and 8.

2. The Ising model — notion of contours

The Ising model is the simplest model of Statistical Physics where a first-order phase
transition occurs. At low enough temperature, this can be proven by the Peierls argument
[Pei 1936, Dob 1965, Gri 1964].

The Ising model describes a system of spin % on a lattice; for this reason we shall denote
configurations of spins by s, (rather than ny). The single site state space is = {—1,+1},
and the Hamiltonian with “4+” boundary conditions is

Is1ng :—J Z sty_l hZSI_J Z S (61)

<z, y>CA TEA TENA

where the first sum runs over pairs of nearest neighbours. The last term could also be
written as nearest neighbour interactions between spins inside and outside of the volume.
We restrict our interest to a two-dimensional system and J € C must have positive real
part. Actually, this model with complex interactions has not great physical relevance, but
it constitutes an easy example that requires the use of cluster expansion techniques.

We introduce the contours as closed paths in the dual lattice that separates spins of

opposite spins, see Fig. 6.1. Let us denote 7y, ... , 7, the contours, and I' = {y1,..., v}
+ + + ++ + + + + + + ++ + + +
+ ++ ++ + + + + ++ ++ + + +
+ - -+ + 4+ +[- -]+ ++ + +
+ +++ - =+ + + + +|— — — |+
+++ - -+ +
+ ++ -+ + - + +
+++ - -+ +
*+ 4 F F F F 4 T+
FIGURE 6.1. A configuration of the two-dimensional Ising model, and its contours.

an admissible set of contours, i.e. a set of mutually disjoint contours. To any configuration
s corresponds a unique admissible set of contours I'(sy ), and when A = 0 the energy of
a configuration can be expressed as

HW(sh) =27 Y |y (6.2)
’YEF sA)
where || is the length of 4. The partition function takes the following form

Zng =[] e M. (6.3)

' ~er
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If 3 is large enough, we can use the cluster expansion to compute the free energy. More
interesting, let us focus to the magnetization at a given site z € A:

(sz)a+ = (I [390 = +1]>A,+ — (I [Sac = _1]>A,+

=1—2(I[sp = —1])a 4 (6.4)
Showing that Re(sy)a+ = &> 0 (uniformly in A) amounts to show that (I [s, = —1])a 4+
is small. The condition s,, = —1 implies that x is surrounded by an odd number of contours;

thus there is at least one, so that
2JB|Y|
- _ —2J8|y| >or: FU{'y} admissible H7 er €
(L [so=—1])as] < D e | e . (65)
YOz ~y'er

where v O £ means that v surrounds .

If J € Ry the fraction is smaller than 1, and we find a bound by omitting it. Then it is
not hard to show that the sum over contours surrounding a given site, with a contribution
e2781 | is as small as we want by taking (3 large enough. From this we conclude that
(sz)a,+ > 0 at sufficiently low temperature, hence the magnetization of the system is
strictly positive. This concludes the usual Peierls argument.

Here, we have to deal with a complex J. Using Proposition 5.1, and with S denoting
clusters (or swarms), we have

D He_Q‘]BW‘:exp{ 3 <I>T(S)} (6.6)

I:Tu{v} admissible v’ €I’ S:y'Ny=2Vy'eS

and the same expression for the denominator, but without the restriction on clusters whose
elements do not intersect y. Therefore

(T =—as] < S e2®llep{— S T} 67
YOz S: Ay €S,y Ny#£D

It is not hard to show that the sum over clusters intersecting a contour y can be
bounded by 4|y|, with § as small as we need by choosing [ large enough. See (5.25) for
a related statement, which formally does not apply here because the contours are not
subsets of Z2. Then

(T [se = —1])as] < D e Re/Ph0 (6.8)
YOz

The sum over contours can be estimated by first summing over the length ¢ of ; second
choosing an initial segment for the contours ( < £2); and third there are 3 choices for the

next segment, then 3 again, ..., and this yields a bound 3¢.
(T [se = —1])as| < D £28Fe AR (6.9)
>4

If BRe J is large enough, this sum is small.

3. The Blume-Capel model — notion of metastable free energy

After this introduction to contours through the example of the Ising model, let us have
an illustration of metastable free energies by considering the Blume-Capel model. This
heuristical discussion can be found in [BL 1984] and [Sla 1987].
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This model describes spin 1 particles on a two-dimensional square lattice. The single
site state space is 2 = {—1,0,+1}, and the Hamiltonian (with free boundary conditions)

H/}flume—Capel _ Z (Sx . Sy)2 — Z 3% — o Z Sz (6.10)

<x,y>CA TEA TEA

The zero temperature phase diagram has three domains, the ground states being the three
translation invariant configurations (-1, s(0, s(+1) with s(xj) = j for all x € Z¥. This is
a regular phase diagram, and the point of maximal coexistence is g, = (0,0). It is given
by the equation e#(s(=1) = e#(s(0)) = et (s(+1), i.e. it is the point where the energies of
the three translation invariant configurations are equal.

To understand the physics of the low temperatures, we have to look on excitations.
Consider the configuration s(*1); the difference of energy when one spin is flipped into 0
is 4 (the number of neighbours of a site). Let us neglect all other excitations, since they
cost more energy, and define ff(s(“)) as the logarithm of a restricted partition function,
with a sum over configurations containing only this type of excitations (which can appear
many times):

0 (5D o158\ = _L-as
sy ~ - ﬁ|A|long'<|A| )" = 5ot

k>0

For symmetry reasons ff(s(_l)) is the same. It is however different for ff (s(9), because
there are two types of excitations, namely the flip of a spin 0 into +1, or into —1.

_ 1 _ k2
R = = og Py () S (e )
= —%e_w.

Therefore we have ff(s(o)) < ff(s(ﬂ)) if f < o0, so we expect that the point g = (0,0)
belongs to the domain of the phase “(0)” at low temperature. This heuristic discussion can
be continued to take into account the parameter p = (u1, p2); the equation ff(s(_l)) =
f f( )) = £y 5(s(+1)) characterizes the point wo(B), the intersection of the three domains,
while the coexistence lines may be obtained by equalling the corresponding ff() These
functions are good approximations of the metastable free energies that are defined in the
sequel.

FIGURE 6.2. Phase diagrams of the Blume-Capel model, at zero and low temperature.
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4. Setting and properties

We now generalize the considerations of the previous section and formulate a theory
valid for a large class of models, that can be put into a contour one. The following
definitions are rather abstract, since no Hamiltonian is ever mentioned.> The reader can
however keep in mind concrete models, as for instance the Blume-Capel one.

Let G = {g(l), e ,g(”)} a set of periodic configurations that we call reference states.
U C B! is the space of (p — 1) thermodynamic parameters g = (u1,...,up—1). The
energies of the reference states are e#(g(")), ..., e#(¢(); they are analytic functions of
pin U. We set ef! = minge et(g). The zero-temperature phase diagram is given by the
homeomorphism described in Chapter 2, Section 2.4. The degeneracy breaking condition
in its stronger form (2.26) is assumed to hold (i.e. the phase diagram is linearly regular),
and

N

0
()

‘aﬂi
Classical lattice models are living on lattices that are subsets of Z"Y. However, our
expansion of quantum models (see Chapter 7) yields a contour model on a lattice A x

{1,2,...,M}P*, A C Z"; there is one more dimension, which is finite and periodic. This
motivates to consider the following lattice; with 7 > v (and v > 2),

A=Ax{l,. .., MYP 5o x {1,..., My_,}Pe.

1. (6.11)

A C 77 is finite. The thermodynamic limit will still be denoted limp »7v, and means a
sequence of increasing volumes (A,) with fixed My,..., M;_,. AP is the torus AP® x
{1,..., M }P oo x {1,..., My_, } P".

A contour is a pair (supp Y, ay); the finite, connected set suppY C Z” is the support
of Y. Let C(z) C R” be the unit cell centered on z € R”. The boundary of Y is
Y = 0SuppY, where for B C Z7, OB = 0U,cp C(z) (if ACR?, 0A = AN A°). ay
is then a labelling that attributes an element g € G to each connected component of 3Y .
|0B| € N is the number of (7 — 1)-dimensional faces in dB.

A contour configuration, or admissible set of contours, is a set P = {Y7,...,Y,} such
that (Supp2) = Uyeg SuppY)

e SuppY; fsuppY; if i # 7,

e the boundary of each connected component of (Supp 2))¢ has constant labelling.
An example of a contour configuration is displayed in Fig. 6.3. Remark that the contours
of the Ising model, as defined in Section 2, do not agree with the definition. However, if
we really want to put the Ising model into this framework, a standard way is to define the
set of excitations of a configuration, E(s) = {z € Z : Jy, |y — z| = 1, and s, # sy }; then
the contours are connected components of F(s), together with the information on which
phases are on their boundaries.

We need a few more definitions. The exterior ExtY of a contour Y is the unique
infinite connected component of (Supp Y)¢. The g-interior Int, Y is the union of the finite
components of (Supp Y')¢ which have labels a = g; the interiorof Y isIntY = Ugeq Int, Y.

3Tt is not only true that different models would lead to different definitions of contours; a given model
can by itself have different interpretations. This point was noted in a presentation of M. Zahradnik in
Churanov (October 1995): at the end of the talk, there was a little confusion;

Christian Borgs: — Milo§, what is now a contour?

M. Z. : — Well, T would say, it’s a matter of personal choice...
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' Y3

(1)

D-

FIGURE 6.3. Schematic picture for an admissible set of four contours. The boundaries
of the supports of contours are thin, resp. thick, when a = g(l), resp. 9(2).

The volume is VolY = SuppY UIntY C Z” and the diameter is diamY = diam SuppY'.
Finally, Y is a g-contour if ExtY has label g.

Given a contour configuration ) in a finite volume A, we define Supp2) = Uy¢g SuppY’,
and 20,4(2)) as the union of the connected components of (Supp®)® that have labels
a = g on their boundaries. With these definitions, the following relations are valid:
Ug20,(2) USupp = A, 25,(Y) N VolY =1Int, Y, ...

B € [B, 0] is as before the inverse temperature. We give ourselves a weight for the
contours; z*# is a mapping from the set of contours into C, that is analytic in g and 3
in the domain U x [By,00]. Tt is translation invariant [that is, 24P (t,Y) = 2P (Y)], and
we have uniform exponential bounds:

‘zu,ﬁ(y)‘ < ePeolSupp Y| o=v|Supp Y| (6.12)
‘aizu,ﬁ(y)eﬂeff\Suple < oISy (6.13)
i

for a large enough constant -y, and

lim z*%(Y) =0. (6.14)
B—00
The first inequality is usually referred to as the Peierls condition. In the sequel we shall
often write O(e 7)) for a number that is bounded by C' - €7, the constant C' depending
on v and p only.
The partition function of a contour model with boundary conditions g9 € G is by
definition

Zgo(A) = Z H e~ 0" (9)| 2y ()] H 2B (Y) (6.15)
2

geG YeD
a(0 Vol 9)=g0

where the sum is over all contour configurations in A, compatible with the boundary
condition. In particular, Zy, (@) = 1.

We summarize the results of the Pirogov-Sinai theory in the following theorem, the
proof of which will be described in the next sections.
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THEOREM 6.1. Stability of the phase diagram.

Assume that for all (u, 8) € U X [By, 00] our contour model satisfies all the assumptions
in this section, with v > 79, Yo being a constant that depends on v and p only. Then
there exist p continuously differentiable functions f*P(g), g € G, with the properties

o limg o0 f#7(g) = e(9), g € G.
o IfRe f*P(go) = mingeg Re f*P(g), then f*5(go) is the free energy of the system.

o f#B(g) is analytic on the domain

M(g) = {(k,3) €U x [, 00] : Re f*(g) = minRe f**7(g")}. (6.16)

e Forall B € [y, 0], there exists py(B) € U such that Re f#oB)F(g) = Re fro®):B (g,
9.9 € G, and the matriz of derivatives

) )
B (g0 — f1B(o(P)
(g, (£ = 77157
has an inverse that is uniformly bounded in p € U.

1 gl:] gpfl

As a consequence, the phase diagram at inverse temperature § has the same topological
structure as the zero-temperature one. Furthermore, the point of maximal coexistence
1o (B) is C! in B, by the inverse function theorem.

Correlation functions and order parameters play an important role in Statistical Physics,
so that results about the expectation values of local observables in the thermodynamic
limit merit a discussion. Let us include them into our general contour model.

Here the name “observables” does not refer to a function on the phase space — we
rather have in mind observables in the original spin model. Hence it is necessary to precise
the meaning in the context of the contour model. The structure is as follows.

We are given a finite set {K;};cr of observables with disjoint supports.

e K;, i€ I,is a function G — C; we associate to it a finite number* Cg, and we set
Ck = Hie] CK;- -

e They have supports: Supp K; C Z", | Supp K;| < oo, Supp K; fi Supp K if i # j.

e A K-contour Y is such that there exists J C I (J # @): Supp Yx D Ujcs Supp K;
and Supp Yx U;¢7 Supp K;; there is a weight zx : {Yr} — C, satisfying the

pp i¢J pp ) g ) ymng
bound
12 (Yi)| < o Beq | Supp Y| —v|Supp Y| HCK"
1€J
The expectation value of K = [],.; K; with boundary conditions gy (g0 € G) — in
the context of the general contour model — is defined as

<H Ki>A,g0 _ ﬁ NI {e—ﬂe“(g)\ﬂng(muml 11 Ki(g)]

iel 0 Vi VY, K geG i€l:Supp K; CW4 (D VD)
IT 2z [] (). (6.17)
Y eDx Ye

The first sum is over sets ) of K-contours; the second sum is over sets of usual contours,
such that P U Q) is admissible and compatible with the boundary condition gy and
SuppY MSupp K. The contribution of K; is either with a factor K;(g), if Supp K; C
20,(Px UY), or with a K-contour Yk, if Supp K; C Yk.

4Think on the norm of K;.
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Classical lattice models can be put into this setting, and also quantum models, as
we shall see in the next two chapters. Typical applications are when |I| = 1 (order
parameters) and |I| = 2 (correlation functions).

The Pirogov-Sinai theory brings the following properties.

THEOREM 6.2. Local observables.

For all § > 0, there exists y9 < 0o such that if the assumptions of this section hold
with y > 7o for all (i, B) € U x [By, 00, then if Re f#F(go) = minyeq Re f#7(g),

e the thermodynamic limit of the expectation value of local observables with boundary
conditions gg,

erists;
° <'>go represents a “go-phase”: for all K,

|(K)go — K(90)| < 0Ck;
o this state is exponentially clustering: let

d(K) = min dist(Supp K;, Supp K});
L,jELiF]

then there exists &€ = €*5(gg) > 0 such that

([T%:), ~TTtKde| < e(TOx exp(~d(K) /).
el el

with ¢(|I|) a constant that depends only on the number of local observables.

Periodic boundary conditions are often considered, because corresponding volumes
have no boundary and this may bring many technical simplifications. The partition func-
tion of the contour model with periodic boundary conditions is given by

Zper(A) =Y [ e @RI TT 28 (v (6.18)

2 geG Yed

where A has periodic boundary condltlons in all 7 directions; ) must be admissible.
The expectation value of a local observable K is defined by (6.17) with the following
modifications: the supports of the contours are subsets of the D-dimensional torus A; the
normalization factor is 1/Z per(A); and P U QY must be admissible.

Let M(Q) = Nge@M(g) \ UggoM(g) with M(g) given in (6.16). M(Q) is the set of
thermodynamic parameters (3, u) where the set of pure phases is Q.

THEOREM 6.3. Periodic boundary conditions.
Under the same assumptions as in Theorem 6.2, the expectation values of a local
observable with periodic boundary conditions exists in the thermodynamic limit; moreover,

if (1.8) € M(Q),
(K) e = g LUK

9eQ

An important assumption for Theorems 6.2 and 6.3 is that the weights are translation
invariant. This means that the original spin model is also translation invariant. In fact,
periodic systems can be transformed into translation invariant ones by considering a lattice
of parallelipipeds in Z", the dimensions of the parallelipipeds being equal to the periods
of the interaction. We can define a new model with larger single site state space (and
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smaller range), that has translation invariance. However, the bigger the period, the bigger
the constant «yy for the assumption on the bound of the weights.

This brings problems when considering models with a small perturbation, not nec-
essarily periodic — this situation occurs when defining thermodynamically stable states,
see Section 3.3, Chapter 2. This is the reason why we need the following complement to
Theorems 6.2 and 6.3.

THEOREM 6.4. Thermodynamic stability
Consider a contour model with weights zHP* and z , analytic in (@, B,a) € U x
[Bo, 0] % [0, o], and with uniform Peierls condition and bounds on derivatives. z*** and

w,8,a
K

zl“(’ﬂ’o‘ are not necessarily translation invariant. We suppose that for each contours Y and
YK7

PP (YY) = lim 2#5%(Y)

a—0
p’:ﬁ Y — 1' p’:ﬁaa Y
2" (Vi) = lim 237" (Vi)
are translation invariant.
Let f*8(g), g € G, be the functions given by Theorem 6.1. Then for all g € G, and
all (p, B) € M({g}), there exists & > 0 such that

(K)o = lim (K

ezists for all o € [0,&]. Furthermore

lim (K = (K.

Notice that we did not define metastable free energies with non-translation invariant
weights — their thermodynamic limits do not exist in general. But there is no problem
with expectation values of local observables, since these are local quantities, up to terms
with exponential decay.

States at coexistence points are not thermodynamically stable. However, we would
need such a notion in order, for instance, to exclude superfluidity in the chessboard phase
of the Bose-Hubbard model. This would be achieved by the following property, which is
certainly true.

CONJECTURE. Consider weights zHP%, zl“(’ﬂ’o‘ which are periodic® with respect to lat-
tice translations (with arbitrary period). Then, if (u, 8) € M(Q),

. . 1 a
1, a7 2 (K er = 2 ol
TEA geqQ
with ¢y > 0, EgEQ cg = 1; these coefficients depend on the weights.

In the case of the superfluidity order parameter, we have K = C(T), and the weights
ZiBha zl“(’ﬁ’a are those of a system with external field aerA(cL + ¢z). In this case
K(g) =0 for any z,g, and lim,_o zl“(’ﬂ’o‘(Y) = 0. This implies [see (6.17)] that (cg)g =0;
from the conjecture, we can conclude that there is no off-diagonal long-range order in the
chessboard phases of the Bose-Hubbard model.

To allow interfaces, it would be nice not to need periodicity.
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5. Positive weights: a discussion

The physics of the Pirogov-Sinai theory is that of classical lattice systems, where the
weights z#*# take real positive values. In view of the application to quantum models, we
have to allow complex values, but this brings some extra difficulties; moreover, it loses its
physical meaning. It is then a moral duty to present first the theory in a restricted but
conceptually meaningful form, and to postpone the general case to a later section. In the
following, A’, A” are any simply connected subsets of A.

The basic mathematical tool for the Pirogov-Sinai theory is cluster expansions. How-
ever it is impossible to apply directly Proposition 5.1, because the compatibility relation
between the contours is rather complicated; the condition with the labels can be viewed as
a long-range interaction between the contours. The idea to solve this problem is to define
new weights for gg-contours by

Z,(Tnt, V)

7). (6.19)

3(Y) = NG (V) B¢t (90)| Supp Y|
geG

A contour Y is ezternal if SuppY NVolY’ = & for all Y/ € ). The partition function can
be written as

k
Zg(A) = Z o—Bet(90)|A"\U; Vol Y| H [zu,ﬁ(yj) H Z,(Int, yj)} (6.20)
{Yl,...,Yk} j=1 geG
external go-contours

where the sum is over non-intersecting, external gp-contours. Dividing and multiplying
Zy(Inty Y;) by Zg4,(Int,Y;), and iterating, we obtain

n
Zgo(A') = e PN N TT5(vp), (6.21)
{1,V } =1
where the sum is over sets of disjoints gp-contours. The compatibility condition is now
exactly that of polymers, so we can apply cluster expansion, provided the decay is still
strong.

Equations (6.19) and (6.21) propose a nice viewpoint on the theory. So let us make a
heuristical break.

If the weights 3(Y") have sufficiently strong exponential decay with respect to the size
of Y, it can be shown that they are rare; this means that the system is in the “go-phase”,
with typical configurations being equal to gy except for some small islands. With f(go)
the free energy of this phase,’ we have

Zgo(A) ~ o B (g0)|A|
(with a correction due to boundary effects of the order e@(¢ ")IOAlY,

But a different scenario may also happen. Suppose that the system should be in the
g-phase, and we are looking at Zg (A'). Then if A" is large enough, typical configurations
will have a large contour Y’ with a large interior Int, Y’ ~ A’. In this case, since z## (V") ~
e 15uPPY’l (here in the discussion we set ef = 0),

Zgy(A') ~ 1A o~ Bl (9N
> o Aflg)IA| (6.22)

5To be precisely defined below.
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If such a scenario takes place, then a contour Y that has a sufficiently large interior Int, Y’
will have a gp-weight
e Bf(9) IntY|

Y) ~ 4By _
3(V) 2 2 )e—v\SUPle e—Bf(g)|nt Y]

~ 1.
Equation (6.22) suggests that 3 has sufficient decay if f(go) < f(g), or if Y is not too big:

e ISupp Y| o=Bf(9)|VolY| _ —Bf(g0)| VolY|

y|SuppY| v 1
B |VolY| = BdiamY’

This shows that the size of the contours may play a role, and that a natural parameter
to characterize the instability due to contours is 8(f(go) — f(g)). The conclusion of this
discussion is that a contour may destabilize a phase if it creates a large domain with a
phase that has lower free energy inside; such a contour pays on its boundary but gains on
its volume, and if the latter is big compared to the former, it is likely to occur.

Let us end this break now and go on with mathematics.

We define truncated go-weights

Sy — (V) if3(Y) < e (7-20)[SuppY]
) = 0 if 3(Y) > e~ (y—27)[SuppY|

= flg0) — flg) < (6.23)

(6.24)

If v is large enough, these new weights satisfy the assumptions for the use of the cluster
expansion. The metastable free energies are defined as

PR = =2 tim Lroge im0 29)

—— lim
v A
fasze Al (Y1, Y} G=1

go-contours

[Notice that limg_,s f“ﬁ(g) = e#(g) because of (6.14).]
Let us define a4 = BfHP(g) — ming ¢ BfHP(g").

PROPOSITION 6.5 (Stability of small contours). There exists vy < oo (depending
on v and p only) such that if (6.12) holds with v > -y, then the metastable free energies
ezist. Furthermore if ag, diam A" < 1, we have

ZZQ(AI/) < oo
g0 (A )

We say that a phase g € G is stable if f“’ﬁ(g) is minimum, i.e. if @, = 0. Proposition
6.5 implies that 3(Y) < e~ (7=29ISuppY] for all g-contours Y, therefore f“’ﬁ(g) is the
free energy of the system. Furthermore the phase diagram at inverse temperature § can
be constructed using the metastable free energies: the domain of the phase ¢ is the set
{p:ay =0}, ie. all p where FH#P(g) is minimum.

Equation (6.19) makes sense when interiors of contours are disconnected from exterior.
In some models this does not hold, although it is clear that phases are charaterized by
rarety of contours. Studying such models requires a reformulation of Pirogov-Sinai theory,
which is currently being pursued [HZ 1998, Zah 1996].

To help in the study of the phase diagram, we define in the next section different
metastable free energies, which are differentiable functions of u, .
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6. Differentiable metastable free energies

The definition (6.24) is slightly inconvenient, because the metastable free energies in
(6.25) are discontinuous functions. A remedy could be to proceed as in [Zah 1984] and to
define

3(Y) = min(3(Y), e~ (1=2)ISuop ¥,
These functions are continuous, but not differentiable. Another problem is that when the
weights take complex values, the corresponding partition functions can be zero and the
definition (6.19) does not make sense.

A procedure that leads to differentiable metastable free energies in the complex case
was proposed in [HKZ 1988, BK 1990]. The iterative method that we employ here follows
[BK 1994]; actually, [BKU 1996] contains a simplified form of [BK 1994] which is enough
for our purpose.

We choose a smooth characteristic function xy with the following properties:

e x is a C'! function.

o x(£) =0ifz < —1; x(z) =1ifz > 1L

e 0 < i—’qf(:v) < 1 for all z.

We define ZgO(Q) =1, fO(gg) = e¥(go) for all gg € G, féo) = el, and set the counter
n to 1. Then we enter the iterative procedure.

> > > For all gg € G, and all gg-contours Y with diamY = n, let
V) =[] x(2 = 4nBRe £ V(go) — Re £ D(g)]) (6.26)

geG
and
o(Inty Y")

Z4o(Int, V) (6.27)

5(Y) = x(Y)z"8 (v) e (90)| Supp Y| H
9eG

Next we define the partition functions for volumes A’ with diam A’ = n:

k
Zgg(A) = ¢ e (@0IA| Z Hg(yj), (6.28)
{¥1,...Y3.} j=1

where the sum is over disjoint go-contours in A’.
At this stage it is useful to observe the following properties

LEMMA 6.6. Iterative lemma.
There exists o (that depends on v and p only) such that if (6.12)(6.13) hold with
¥ > 7o, then for all Y with diamY = n and all A’ with diam A" = n,

(a) 3(Y)| < e (r-2ISuppY],
(b) |3i (V)| < (85p+1)|V01Y| —(v— 2ISuppY\
(c) Z 50 (A") #0 for all A/, diam A’ = n;
(d) [Zg(A)] < exp(—ﬂfon b |A |)e8 oA’ .

)

Vi
-1 1 ’
|5 Za0(A))] < aBlA'|exp(—G15"V|A]) ess P4

Notice that point (c) allows to define 3(Y) with (6.27) in the next loop of the iteration,
ie. for Y with diamY =n + 1.
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The final step of the iteration is to define

F™(g) = e*(g) + log > Hz (6.29)
A /‘Z" ﬁ|A|
{¥1,....Y} 5=1
with the sum over disjoint g-contours in A, with diameter smaller or equal to n. We write
£ = minRe ™ (g). (6.30)
geG
The iterative procedure ends here. > > >

PROOF OF THE ITERATIVE LEMMA. Proof of (a): 3(Y") is given by (6.27); since diam Int, Y <
n, we can use the claim (d) of the iterative lemma to bound Z,(Int,Y"). We need a lower

bound for Z, (Int, V), which we obtain from cluster expansions. Namely, from (6.28),

log Zg(Inty V) = —Bet(go)| Inty V] +1og Y [[3(¥5) (6.31)
{Y1,....,Y3} j=1

where the sum is over disjoint go-contours in Int,Y; |3(Y;) < e~(r=2)ISuppYj| 1y the
lemma, since diamY; < n. Therefore we can use cluster expansions to get

o Y o= Y Y

{Y1,...,Y;} j=1 x€lnty Y C Suppax

6.32
Supp CI (6.32)

all contours of the clusters are inside Int, Y. In particular, their diameters are smaller or
equal to n — 1; then

k
log Y JI3(¥) =8It Y|(£™ (g0) — *(90))

{Y1,...,Yy} =1

S CNint, Y
- X @T(0)| upps Cr,l-" 5 (6.33)
C,Supp C¢Intg Y | upp |

The last sum may be bounded by (5.22); this leads to the bound for Z,, (Int, )

[T 1Zg Ity v)| > e AR/ Va0t Y] o= gl Suppy] (6.34)
geG
If B(Re £~V (go) — f(nfl)) 2, then ¥(Y) = 0 and also j(Y) = 0; otherwise, we have
5(Y)| < e 7ISuppY| o=B(eH(g0)—ef)] Supp Y| H 01501ty V] (50 |Tntg V|
geG
< e~ (= ISupp Y| o—p(et (g0)—ef)| Supp Y| (6.35)

For the last inequality, we used > . [0Int, Y| < 20|SuppY| and diamY'|SuppY|
| VolY|.
Finally, e#(gg) cannot be much larger than ef. Indeed, from B(Re F=1(gy) —
Re f("D(g) < o+ for all g € G, and
Blet(g) — 1V (g)|

by (5.25) with ¢ =0 and § = 1, we have B(e#(go) — €f) < 1.

VAN
e~ =
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Proof of (b):
0 0 (Int, Y)
)| < (V|| 228 (V) o€ (90)| Supp Y| 9 .
Freisel \%x( )[2#0(v)e \H\Zgo el (6.362)
(Int, Y)
2B () gPe (90) [ Supp Y| 9
‘ 7 ‘H‘Z Inth)‘ (6.36b)
0 Z,(Int,Y) Z,(Int, Y)
+(Y)] 228 (v) e (90)| Supp Y| 9
X( )‘ (¥)e ‘Z‘auz Zgo(Inty Y )‘ #eC\ g }‘ Zgo(Inty Y')
(6.36¢)
By the definition of X(Y) we have
0 i
X0 < S 4Bnl g i) - 2 Vo)l (6.37)

gelG

Since ("D (g) has an expansion in terms of clusters, we can use the bounds (5.24) and
(6.11) to get
2
Opi
We obtain the bound for (6.36a), namely 83pdiamy e~(*=2ISuppY| — The hound for
(6.36b) is immediate from (6.13) and the bound for the ratio of partition functions; we
find (1 +28) e~ (7=2)Supp Y
Finally we consider

F(g)] < 2. (6.38)

0
7 (Int. V' 7, (Tnt, Y
0 Zy(Int,Y) Oy o(Intg Y) Z,(Int, V)2 0 1 .
Opi Zyy (Int, V) Zgo(Inty V") Opi Zy, (Int, Y')

(6.39)

For the first term we combine the bound (e) of the lemma with (6.34); for the second term
we have from (6.33)

[Zgo (Intg Y)] -1 ey eﬂf(nil)(goﬂ Intg Y| ehgo (Intg Y) (640)

where hg,(A') is a sum over clusters of go-contours that intersect the boundary of A';
|hgo (A)| + |a%ith(A')| < 55|0A’|. Collecting the four bounds, we obtain

0
Opi

5(Y)) < e (- 2ISuppY] [SBp diamV 41423+ (a+2)3|Int Y| + | Supp Y|,
(6.41)
yielding the desired bound.

Proof of (¢): Cluster expansion can be used to obtain an expansion for the logarithm.
It is bounded, therefore Z,, cannot be zero.

Proof of (d): Let a,(n R = [(Re f(”*l)(gg)—fén_l)); a go-contour is small ifagg_l) diamY <
1, otherwise it is big. We write the partition function as

k
Zp(N) = > Zgmal(Ext) [T 2*°(V)) [ Z,(nt, Y; (6.42)

{Y1,....Yi} Jj=1 geG
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where the sum is over disjoint, big, external gg-contours in A’. Ext = ﬂ?zl ExtY; and

nggnau(Ext) is the partition function that takes only into account small contours; more
precisely,

k
ngomall(EXt) — 6*56”(90)|EXt| Z H 3(Y'j), (6.43)
{Yl,...,Yk}jzl

the sum being over small, disjont gp-contours in Ext.
Let f sma“H(gg) be the free energy corresponding to ngomau. We show that f5mal(gy) is

close to ("= (go); with z any site of Z7,

f(nfl)(go) _ fsmall(go) _ Z @T(C) N Z @T(C)

C,Supp C>x | Supp C| C,Supp C>x,small | Supp C|
oT(C
_ ¥ © (6.44)
| Supp C|

C,Supp C>z, big

and all the contours in the clusters have diameter smaller or equal to n — 1. Big clusters

contain at least one contour with diameter bigger than 1 /a,gg_l); from (5.25), choosing
c =2,
(n-1) af
70D g0) — F )| < e < Y (6.45)
We obtain the bound
(nfl
|Zsmall(EXt)| < e—ﬂRef(” 1)(go)\Ext\ -0 | Ext | el6u\8Ext|
(n-1) bV
— o Bl VIBxt| o~ —|Ext| o5 |0Bxt| (6.46)

By the iterative lemma at steps before n, we know that
(n—
| Z,(Int, V)| < e Plo Vit V] ggslomty V] (6.47)

We have to check that fénﬂ) and fénfl) are close. From (5.25) with ¢ =1 and 6 = 1/e,
we have for any gg € G

BFD o) — FO D go)| < e < (6.45)

Let g and ¢’ such that fén_l) = Re f(® 1 (g) and fén_Q) = Re f("2)(¢') (possibly g = ¢').
Then

0- 2 < B[Res"2g) = Re D (g)] + B[Re S D(g) ~ Re S ()] =
:fén—l _fon—Q) _
1

= B[Re s () = Re "V (g)] + B[Re f"7D(g) = Re I (g)] < 04—

n
Recall that diamInt < n; we see here that

k
BIFS" Y = £t | < [oTne| < Y 27| Supp Y.
7j=1
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At this stage, we have

(n—1)

Zyy(A))] < & AN o 08! > o IBx
{Y1,....Y:}
external, big go-contours
k
1" (¥))e Bel|Supp Y| o=B(ely—fg" 1) Supp Y| o2¢]Supp Y31 | (6.49)
=1
If e(’)‘ = eH(g),
-1 _
—Blely — 157V) < —Be"(9) — " V(g) < L. (6.50)

|Zgy ()] < e 806" IN] o 155l0A

>

{Yl a-"aYk}
external, big go-contours

(n 1)

| Ext | H e~ (Y—20— 1) |SuppY|‘ (651)

Let f be the free energy corresponding to a polymer model with weights 2(Y) = e~ (y=20=2)[SuppY|

when Y is big, 0 otherwise, and let Z be its partition function (with § = 1). We introduce
1 < efIVoYiHISuweYil 7t v;) (6.52)

in the product of (6.51). Since only big contours are present in 7, again using (5.25) with
c =2,

F< e < g (6.53)

if v is large enough. Therefore

k
(n—1) A7 ’ FIAl
| Z40 ()] < o BI" TV IN| grgz oA GfIA| Z H —20-2) ISuplez(Inty)
{Yl,...,Yk} ]:1
external, big go-contours
(n—=1)| A7 ’
< e Bl IV o5 O] (6.54)

Proof of (e): Because of lack of time, the proof is not written here. I apologize and
refer to the appendix of [BKU 1996].
]

7. Proofs of the theorems

PROOF OF THEOREM 6.1. We use the functions f(™ (go) constructed by iteration to
define the metastable free energies. We set, for all g € G,

F7P(g) = lim f™(g). (6.55)

n—o0

The limit exists, as well as the limit of derivatives; indeed, it follows from cluster expan-
sions, that we can use because of Lemma 6.6 (a) and (b).



7. PROOFS OF THE THEOREMS 7

We check now that x(Y") = 1 for all gg-contours Y, when Re f#*7(go) = mingee Re P (g).
For alln > 0,

oT(0) 1

ﬁ‘f(n_l)(QO) - f“’ﬂ(go)‘ = ‘ Z m < gn’ (6.56)
C,CSY.ugpax bp

The sum is over clusters containing at least one contour with diameter bigger or equal to
n; the last inequality follows from (5.25) with ¢ = 1 and § = 4. Therefore, if Re f#(go)
is minimum,

1
4dn’

B(Re f"~D(g) = Re [ D(gy)) > (6.57)
for all g € G, and x(Y) =1 in (6.26).

As a consequence, Zy,(A) = Z,,(A) for all A, and the metastable free energy f#£(go)
is equal to the free energy of the system.

The analyticity of f#?(go), in the domain where its real part is minimum, is true
because it has an expansion in terms of clusters with polymers having analytic weights
[when Re f ”’ﬂ(go) is not minimum, the weights are C'* but not analytic, because so is the
function x(Y)].

The last claim is a consequence of the inverse function theorem.

O

PROOF OF THEOREM 6.2. The expectation value of local observables has an expan-
sion in terms of contours, see (6.17). K-contours have various external labels, but we
would prefer them to have external label gg.

Consider observables K, and a contour configuration Yx U Q. We gather together
a contour Yxr € Yx with contours that surround it. We also consider collections of
contours surrounding supports of observables. Whenever a contour belongs to two different
collections, we take the union of the collections. See Fig. 6.4 for a concrete example. We
denote by Vi a collection of contours and observables such that one contour surround all
others (this contour can be a usual contour, or a K-contour).

Yy
Y1
go

-

FIGURE 6.4. Five contours and three observables. YPx = {Yk,}, 9 = {¥1,Y>, Y3, Y4}
then QJ’K = {yK} with Vg = {YKl,Yl,YQ} and QJ’ = {Y37Y4}. Here ZK(yK) =
2k (Y, )2(Y1)2(Y2) K2(g); the contribution of K3 is a factor K3(go).
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We define the weight zx (Vi) to be
(V)= [ zxc(Vx) [] 20 ] Ki(g:) (6.58)

Yr€VK YeVK

The last product is over those observables K; such that Supp K; C Vol Yk, but K; does
not belong to any K-contour of Yg. The configuration g; € G is chosen according to the
labels of contours of Vi. We define

SuppVk = SuppYx U SuppY U Supp K;.
YeVk

U
Yk €VK 2:Supp K;CVol Vi

Let J C I denote the observables concerned by Vx. We have the bound for zx (YVk)
|ZK(yK)| < e—ﬂeff\SuppyK\ o7/ Supp Vk| HCK- o7l Supp K| (6.59)
i€
It is possible to rewrite Equation (6.17) by first summing over sets )% of collections
of contours, then over compatible sets of contours, namely

1
<H Ki>A’g0 = Za(A) Z . H Ki(g0)
i D' D':Y i€1:Supp K;Z Vol (Y UY')
H e~ Pt ()12, (V5 VYD) H 2k (Vk) H #B(Y). (6.60)

9eG VeV Yey'

The constraint )’ : 9’ means that 9’ U2’ is admissible and compatible with the
boundary conditions g, and moreover that VolY @ Supp Yk for all Y € 9" and Vi € 9.
The next step consists in defining

Zg(Intg Vi)

_ Bet (g0)| Supp Yk | .
3x(V) = 25 (VK) e Zgo(Intg Vi)

geG

(6.61)

This makes sense, since Z,(A') # 0 when Re f #8(go) is minimum. Furthermore, we have
the bound

i (Vi) < e~ (v=2)|Supp Vx| (6.62)

Remark that in (6.61) interiors of Vi are not necessarily simply connected sets, and
the contours in Z.(Int, Vi) are required to have simply connected volumes. This makes
the situation slightly different to that of the previous section. However, it is clear that all
the steps can be repeated almost without any change.

The expectation value of local observables can be rewritten using (6.61)

<1;[ Ki>A,go = Zgol(A) o—Bet(90)|A| Z H K;(g0) H 35 (V)

D’ i€I:Supp K; 7 Vol 'y V€D

k

> [1:(vi) (6.63)

{Yl,...,Yk} j:1
go-contours,Y; ~2)-

where the last sum is restricted to contours Y; such that VolY; M(Supp2Q)’ U Supp K).
We can use cluster expansion for the logarithm of the last sum, as well as for Z 4,, so as
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to obtain

<HK¢>A790=Z 11 Ki(g0) ][ 3K(yK)eXp( D @T(O)). (6.64)

D’ i€I:Supp K; 7 Vol ' V€D C:h K

Here, the constraint C' : ), K means that at least one gy-contour of C' has volume that
intersects Supp Y x U Supp K.

The above expression is absolutely convergent, uniformly in A. This proves the first
claim of Theorem 6.2.

For the second claim, we note that, in (6.64), the case 9% = @ yields [[, K;(g0);
consequently, the difference between (K),, and K(go) is as in (6.64), but with a sum over
non-empty ). Because of the bound (6.59), and bounds on clusters, we get the claim.

To prove the last claim, we write

<H Ki), = <H K)o+ (H K;) ¥, (6.65)

where (], Ki)zgort is given by (6.64), except for a restriction on the sizes of elements in
2’ and clusters. Namely, only collections Yk with | Supp V| < id(K ) and clusters C'
with | Supp C| < 1d(K) are considered.

(I', Ki);o;g involves a sum over ) where at least one Yk € 9’ has bigger support,
and a sum over all 9%, but with a contribution of clusters

exp( Z @T(C))—exp< Z @T(C)>:

' K C:%J}(,K
short
=exp( 3 <1>T(0)) [exp( 3 <I>T(O)>—1]. (6.66)
C:Y% K C:Yh K

short big
It is clear that we have exponential decay, namely that there exists & such that
bi _
(II&),°| < e ] Ok (6.67)
i icl
The proof can be completed by expanding each (Kj)4, as above, and writing (K;)g, =
(K;)$hort 4 (K;) €. Since

LR =TTk, (6.68)

and each (Ki>gboig having exponential decay, we obtain the bound of Theorem 6.2.
O

Because of lack of time, no proof for Theorem 6.3 (expectation values of local observ-
ables with periodic boundary conditions) is provided here; we refer to e.g. [BKU 1996].

Before entering the proof of Theorem 6.4, let us observe that the weights 2% (Y)
converge to z*#(Y") uniformly in Y

LEMMA 6.7.
For any € > 0, there exists a > 0 such that if a < a,

|#P (YY) — 2BV < ee3ISupPY

for all contours Y.
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PROOF. Let us fix . For any Y such that |SuppY| > %log %, we have

|28 (Y) — 2P (Y)| < 26 I8IRYT g alSupp YT (6.69)

On the other hand, for any Y there exists a(Y’) > 0 such that
24P (Y) — 2P(Y)| < ee2ISuppY] (6.70)

for « < @(Y). Therefore we can choose
a= min a(Y). (6.71)
Y,|Supp Y| < 2 log 2
U
PROOF OF THEOREM 6.4. Let us define

Y) = 2PP(Y) — 2B (Y). (6.72)

From the lemma, we know that |Z(YV)| < ee 2!5"PY| for all ¥, if a is small enough.
First let us see that, if a,, diam A < 1,

«
e~ OWIAl - < ZQO(A)‘ < eO@IA] (6.73)
Zgo (A ’
with Zg (A) the partition function with weights ZiBhe
k
Z;:) (A) = Z H e Per(9)|1Wy ({Y1,.... Y3 })| H Zﬂ,ﬂ(y))

{Yl, ,Yk}gEG :

- ¥ [H )] Zao(A\ Uj Supp V). (6.74)

{"1,...,Y} j=1
It is not hard to check? that the ratio
Zgo(A\ U; SuppYj)

Zgo(A)
may be bounded by []; elSupPYi| - Therefore
Zg(A) -
90 5(Y:)| el SuppYj|
2wl s X TTsemdse, (679
0 {v1,..Ys} j=1

The bound (6.73) is now immediate.

Since Z;)(A) # 0, the expectation value of K in the model with weights zH/#:
well defined at finite volume and is given by (6.63). We can use the standard trick of
Pirogov-Sinai theory, namely to define new weights

— a/By /8 ’J' S Y g
34(Y) = 2B (y) efeH (90)| Supp Y| H g
€G

— Y) (6.76)

Zg(Intg Vi)

@ (yK) = z/"’aﬂya(yK) eﬂe“(go)|suppyl{| .
® K L Ze: Tty )

(6.77)

"The idea is, of course, to use cluster expansions. The only difficulty is that the volume is not
necessarily simply connected; however, the contribution of the contours that surround the holes of the
volumes can be easily estimated.
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We prove in Lemma 6.8 below that the ratio of partition functions satisfy a bound that
allows to use cluster expansions. Therefore we have an expression similar to that of (6.64).
This expansion is absolutely convergent, uniformly in A, which proves the first claim of
Theorem 6.4. Furthermore, since [3*(Y)| < e™7SWPY! and similarly for 3% (Vk), we
have by Lemma 6.7 that 3%(Y) — 3(Y") uniformly in Y, so that we get the second claim.
O

Recall that we defined ay, = 5(Re f8(g) — f#’ﬂ)-

LEMMA 6.8.

Assume that the set {g € G : Re f*5(g) = fé"’g} has only one element. Then there
exists a > 0 such that if o < @ and a4y diam A < 1,

o 72 (A) £0,

Zg(A) 510A
g < e .
ng(A)‘ X

PrOOF. We proceed by induction on the size of A. The statements are clear when
A = &, and we look now to the situation where diam A = n.

By the induction hypothesis, Zg (Int, Y') # 0 if Y is a contour in A; the definition
(6.76) makes sense, and

k
72(A) = e PN S ] 5(%)). (6.78)
(Y1, Y3} G=1
go-contours
3%(Y}) has exponential decay; hence Zg (A) differs from 0 by the cluster expansion.
The bound for the ratio of partition functions is proven in a similar way as Lemma
6.6 (d). We call “small” a g-contour Y with a,diamY < 1, Y is “big” otherwise.

Zg(A) 1 k
g = «, small B ' o '
Ze (A) ~ 75 (A) Y g (Ext)H{z“ W) IT 25ty v) ). (6.79)
{Yla"'aYk} 7=1 ¢'eqG
big, external
Here, Ext = N; ExtY; and
k
Z;u,small(A’) = Z e~ Pt (g) Ext | H{zu,ﬂ,a(yj) H Z;,(Intg,Yj)}. (6.80)
{Y1,.., Y1} Jj=1 e

small, external

For small g-contour Y;, and if diam A’ < n — 1, we can use the induction hypothesis
so as to write

k
Z;y,small(Al) _ e—ﬂe“(g)‘A,‘ Z H 50‘(Y'j) (6.81)
{Yl,...,Yk}j:1
small

with |3%(Y;)] < e (07107)ISwpYjl - Proceeding as in the proof for the bound (6.73), we
get

|Z;]Jz,sma,ll(Al)| |Zsmall(Al)| eO(a)|A’|

g
o BRe f5m2l(g)+O()]|A'] JJOA'] (6.82)

VANN/AN
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Furthermore f5™2!!(g) is close to f*P(g):

B|fsmall(g) _fu,B(g)| < Z M < ag/4_ (6.83)
C,Sugp Coz | SuPpC|
ig

Let us come back to (6.79); let Supp = U;?:l SuppYj, and observe that

k
128 (A)] > |28 (Ext)] e Re /" (g0)[Supp| o—[0AI-[Supp] 11125 (nt ;). (6.84)
j=1
Therefore

« «,small
Zi (A) ‘ < e‘aA‘ Z ‘Zg . (EXt)
Za (A) 0y | 25 (Ext)
big, external

k
H{|zu,ﬁ (Y;)| elRe f#7(g0) +1]| Supp ] H ‘ g (Inty ¥5) ‘}
. Z Intg/ Y})
j=1
< POA S e stig) e g Bt ([0 (a) %] Bxt|
{Y1,...Y;}
big, external
k
H o~ (Y=1-100)| Supp ¥;| —Blef —Re [ (g0)]| Supp Y|
j=1

First we observe that
—B(Re f#5(g) — Re f43(go)) + O(a) = —ay + ag, + O(a)
< _%a’g + 2“90
if o is small enough — we use here the fact that a, and ag4, cannot be zero at the same

time when g # go. Second we estimate el — f#5(gg). Blel — f#’ﬁ| < 1 from cluster
expansion, and B(Re f##(gq) — #’/3) = ag,. We obtain

(A)

>

eQ\ﬁA\ E : e —Zag|Ext| 02040 (| Ext |+]| Supp|) H —(y—2—100) \SuppY\

{Yls---aYk} J=1
big, external

‘Za ‘ =

(6.85)
Let Z be a partition function with big g-contours Y having weights e~ (7—3-107)|Supp Y|
and f be the corresponding free energy with 8 = 1. Since

1 < efIVoIYT gl SuppY! Z(1nt v),
we can write
Zg3(A)

k
2[0A] [2a4.|A| —ag| Ext| fIVolY;| ,—(y—3—107)| Supp Yj| 7 .
e e e 4 e e Z(IntY5).
Zml < > I1 (Int Y;)

{Yla'-'ayk} Jj=1
big, external

(6.86)
We obtain the desired bound by using ag|A| < |0A[, and —1a, < f. O



CHAPTER 7

Contour representation for quantum models

The idea to expand a quantum model around its potential part is not new at all. It
was proposed by Ginibre thirty years ago, as a tool to establish the existence of phase
transitions in different quantum lattice models [Gin 1969]. The proof combined Trotter
formula and Peierls argument. A different approach, that does not make use of the Trotter
formula but also rely on the Peierls argument, was simultaneously proposed by Robinson
[Rob 1969]. This more algebraic method was used to show that the lattice gas with
nearest-neighbour repulsion (antiferromagnetic Ising model) is stable against small kinetic
moves [LM 1993].

The Trotter formula was used for various studies of quantum lattice models. Kennedy
[Ken 1985] proved long-range order in the anisotropic Heisenberg ferromagnet;' it should
be noticed that his method is perturbative in the temperature, but not in the anisotropy
coefficient — for all anisotropy, it is possible to be at low enough temperature and to
observe the chessboard structure. Again with the Trotter formula, the Ising model with
strong transverse magnetic field can be shown to have Ornstein-Zernike decay of the
two-point function [Ken 1991]. A boson model with nearest-neighbour interaction was
proposed in [MS 1996] and the low temperature phases were established; the ground state
has a finite degeneracy, that is removed by mixed thermal-quantum fluctuations (our
results, from this chapter and the next one, are not sufficient to cover this situation). The
Falicov-Kimball was investigated in [MM 1996]; the degeneracy of the ground states of the
classical model was shown to be removed by the quantum fluctuations. One-dimensional
spin systems were studied by [AN 1994]; using a functional integral representation, the
quantum spin chain is mapped onto a two-dimensional Potts model, and studied in a
random-cluster representation.

The extension of Pirogov-Sinai theory to quantum lattice models was proposed in
[Pir 1978], but was realized only 20 years later [BKU 1996, DFF 1996]. Both papers apply
to spin systems, but the latter also deals with fermion systems. An extension to bosons can
be found in [BKU 1997] (with a discussion of the incompressibility of the ground states).
A class of models where the ground states of the classical part are infinitely degenerated
was studied in [DFFR 1996, FR 1996, KU 1998]; see Chapter 8. Interfaces in quantum
models are discussed in [BCF 1997] (see also [DMN 1998]).

1. Duhamel expansion

We consider a system with Hamiltonian Hy = Tx + Vi, where V, is an operator
that is the quantum equivalent of a classical interaction. T is a quantum perturbation,
as for instance a small kinetic matrix. Our aim is to obtain expansions of the operator
e PTA=BVA . recall that this operator plays a role in the definition of the free energy of the
system.

YA page devoted to the Heisenberg model, and results of Mathematical Physics around, exists on
internet [KN 1994-].

83
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Our starting point is the Duhamel formula

B
e AVA=BTA — o= BVA +/ dre ™A (=T ) e F-AFTA), (7.1)
0

It can be proved by showing that both sides satisfy the differential equation L[] =
ds
—[-][VA + T}4].) Iterating, we obtain

e BVA—=BTA — o=BVa 4 Z / dri...dmy,
m>1 0<T1 < .. XTI <8

eV (—Ty) e T L () eV L (7.2)

T is a quantum interaction, i.e. TA = > 4 4~ T'a. Inserting the expansion of unity
1 =73, car [na)(na| on the right of each operator (—Ta), we obtain an expression for
the trace, namely

Tr e BVA=ATA — Ty o= FVA 4 Z (—1)™ / dry...d7,
m>1 A1, Am n(l) (m) 0<m <. < <8

e—nVA(nE\l)) (ng\l)|TA1 |n5\2)>e—(7'2—7'1)VA(n5\2)) (nAm |Ta,, |nA ye ~(B=mm)Va(n}") , (7.3)

where we used V) (ny) instead of (na|Va |na).
Remark that a similar expansion can be done using Trotter formula:

e=BVA=BTA _ |im (e—VA/N e—TA/N>/BN = lim (e_VA/N [1 — QDﬁN. (7.4)
N—o0 N—oo N

Proceeding in the same way as with the Duhamel expansion, we obtain a discrete analogous
of (7.3)

BN
Tr e #Va—6Ta — —BVA : _1\ym
: L S Y Y%
m=1 A, A, nE\I)’“ﬂnE\m) 1< n<.<mm < BN

T TQ—T 2 T —™m
=) (o) T @) =BG () T ) o= S aei) - (7.5)

e e
The two expansions are totally equivalent for our purpose. Actually, our choice to use
the Duhamel formula is motivated mainly by esthetic considerations.

2. Models with local interactions

When the potential V' is an on-site interaction, i.e. when it is of the form (3.1), we can
show that the domain of the high temperature phase extends to very low temperatures,
provided the quantum perturbation 7" is small enough.

The idea is to combine the Duhamel expansion with a polymer representation of the
partition function; the result will be then immediate from Chapter 5.

To a given choice of Ay,..., A, corresponds a set {A1,..., Ay} of mutually disjoint
connected subsets of A, such that UTZIA]- = U§:1Aj- We call these connected subsets
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polymers and define their weight,

p(A) = FPOWAL S (Cpym / dry ...dy,
0<T1<...<Tm <f

m 21 Aly HA
UjAj=A

(na| e VAT e~ (Va1 o= (B=mm)Va | 0y (7.6)

where fo(5, ) is the free energy of the classical model, i.e. when H = V. The partition
function takes the form

l
Zy = e BRGWIAL S T p(A,). (7.7)
{Al,...,Az}jzl
ifﬂAj

With ey = min,, (nz| Vizy [n2), © € Z”, we have

(Al € VAT, 6V Ty o BmVa )| < e B0l Ty . [T
(7.8)
Jo(B,p) < eg, and the integral over times 7; brings a factor 5™ /m!. We find a bound
_ 1 m
(A < S ST = (B4 Tl o) (7.9)
m>1 A>zx

Theorem 3.2 is a direct consequence of Proposition 5.3.

3. Derivation of the classical contour representation

The excitations of a classical lattice model can be (generally) expressed as contours.
The study of the low temperature behaviour, and more precisely the proof that the fea-
tures of the ground states survive at low temperatures, is related to the rarety of the
contours. Our aim is analogous here, where we consider a quantum perturbation of a nice
classical model. We want to show that the fluctuations due to the small quantum term
are rare, and hence the expectation value of observables is close to the matrix element
in the (classical) ground state. The procedure follows [BKU 1996, DFF 1996], see also
[BKU 1997]. Actually, there is an important technical difference between [BKU 1996] and
[DFF 1996], namely that in the previous paper one introduces a discretization of the addi-
tional dimension, so as to obtain a classical lattice model; in the second paper, the contour
model is in a semi-continuous space, and it is necessary to reformulate the Pirogov-Sinai
theory in this case. However, the basic idea, namely to control the fluctuations by showing
that contours are rare, is the same in both papers.

We immediately describe the result of this section — the contour representation of the
quantum model — in Proposition 7.1 below, and therefore we recall some notation.

Let M € N and 3 > 0 be such that M3 = 8 — the discretization of the additional
continuous dimension, as we shall see. We introduce the lattice Ly = A x {1,2,...,M} C
Zr L,

We view Ly as a cylinder by imposing periodic boundary conditions along the extra
dimension (i.e. we assume that for all z € A, (z,1) and (x, M) are neighbours). We define
contours as in Section 4, Chapter 6; a contour Y is a pair (Supp Y, ay ), where SuppY C Ly
is a (non-empty) connected set and «y is a labelling of elementary faces F' of 0 SuppY,
ay (F) = ¢, ..., ¢®, that is constant on the boundary of each connected component
of Ly \ SuppY. A set of contours {Y1,...,Ys} is admissible if the contours are mutually
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disjoint and if the labelling is constant on the boundary of each connected component of
[Ule Supp Y;]C. This set is said to be compatible with the boundary conditions go if the
external connected components (those touching Z**!\ L) of [Ule Supp Yi]c have the
label equal to gg. The horizontal faces centered at (x,7) will be referred to as P(z,7) (P
for “plaquette”).

Let K be a local operator, with Supp K C A. We define ]L[I\( , with periodic boundary
conditions along the time direction for all x € A not belonging to Supp K (i.e. we assume
that for all z € A\ Supp K: (z,1) and (z, M) are neighbours). In other words, think of
LY as the cylinder Ly that is cut along Supp K at ¢ = 3. The “boundary” S(K) C TE
in time direction is

1y.

S(K) - IESI%pKP(x’ 2)7

notice that P(z,0) = P(z, M) whenever x ¢ Supp K. The admissibility and compatibility

with the boundary conditions of a set of contours in T, is defined in the same way as
above.

A K-contour Yi now is a triple (S(K),Supp Yk, ay, ) where Supp Y C LK is such
that each connected component intersects S(K), possibly Supp Yix = &, and the labelling
oy, is constant on boundary faces of each connected components of the complement
[Supp Yk |°.

We are now ready for the definition of the equivalent classical contour model.

ProPOSITION 7.1. Contour model for quantum system.
Let H¥* =TH + V¥ o quantum interaction, with TH € Q and V* € C(Ry, G, Ay, a,b).

i) There exists a function p: {Y | SuppY C Lpx} — C such that the partition
function of H/’\‘g0 can be written as

k
z¢ = > [Tetv [T e oo, (7.10)

{Y1,... Y }i=1 9€eG

where the sum is over admissible sets of contours in Ly compatible with the boundary
conditions go; the set W is the union of the connected components of [Ule Supp Yl] ¢
with labels g on its boundaries.

ii) For any ¢ € R, there exist fo < oo and gy > 0 such that if 3 € [B0,2B0] and
ITH|| < eo the following bound is valid for any Y:

p(Y)] < e+l (7.11)

iii) For any ¢ € R, there exist 3y < oo and € > 0 such that if 3 € [3},26)] and

174 + S0, 12 TH] < e we have

o _ ~
\au.pm\ < (Cof + 1) e~ GebTaMT, (7.12)

iv) If K € L(0), orif K € L(c) and [Ta,Na] =0 for all A, there exists a function pg:
{Yi | SuppYx C LK} — C such that

k

TRe ST = S i) [Lov) [ e Pl (7a3)
{YK,Yl,...,Yk} i=1 gelG
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As before, the sum is over admissible sets of contours, compatible with the boundary
condition go; p is the same function as in i); Wy, is the union of the connected
components of [U 1 Supp Y; U Supp YK]C with labels m on their boundaries.

v) For any vk € R there exist ﬁo Kk < 00 and go,x > 0 such that if B e [ﬁg K,ZBO K]
and ||T|| < eo,x we have

lor (Yi)| < O e~ Bes +70lVie| (7.14)
with Cx < 0o.

The rest of the section is the proof of this proposition. We begin by expanding
Tr K e #HX" to obtain explicit expressions for px and p; hence part iv) will be proven,
and also part i) that can be viewed as a special case of iv) with K = 1 [i.e., formally,
Supp K = & and there is no summation over Y in (7.13)]. Similarly v) implies ii) and
therefore the following proofs of iv), v), and iii) are sufficient. For sake of clarity we drop
out the dependance in g in the proofs of points iv) and v).

PROOF OF PROPOSITION 7.1 iv). Our Hamiltonian has periodicity ¢y < oo. Without
loss of generality, however, one can consider only translation invariant Hamiltonians, ap-
plying the standard trick. Namely, if © is the single site phase space, we let Q' = Q{1-fo}”

Then we consider the torus A" C Z", ¢5|A’| = |A|, each point of which is representing a
block of sites in A of size /j, and identify
o ~ b

Constructing H' as the Hilbert space spanned by the elements of Q’ A’, it is clear that H’
is isomorphic to H. The new translation invariant interactions ®' and T’ are defined by
resumming, for each A C A’, the corresponding contributions with supports in the union
of corresponding blocks. Notice the change in range of interactions. Namely, it decreased
to [R/4y] (the lowest integer bigger or equal to R//y).

From now on, keeping the original notation #, S, ... , we suppose that the Hamiltonian
is translation invariant.

We expand Tr K e #7X" with Duhamel formula, and we find [compare with (7.3)]

— 90 0 1
K =Y % Z /O<n< <T<B dry ... dr, (0l K n)

m 20 ALy Am ) ©)

e RO (00 (~Ta) In >e*“2*ﬁ>vf°("f D (<Ta,) Iy e TR

(7.15)
Let us introduce the space-time configuration na : [0, 3] per — OA and the quantum config-
uration wp = (np; Ay, ..., Ap; 71, ..., Tm), where the mapping ny is constant except for
(m + 1) discontinuities at times 0,71, ..., 7. The previous equation can be summarized
with

Tr K e P = / dwp (np(—0)] K |ra(+0)) e Jo drVi®(na(m)
w,

90,

[I (na(ra —0)|(=Ta) Ina(ra +0)) (7.16)

Acwy
where fW , dwy is a shorthand for a sum over m > 0, over m transitions (in A), over
90

m configurations, and integration over m ordered times; we denoted with 74, the time 7;
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at which occurs the transition A;. Wy, o is the space of all quantum configurations on
the infinite volume Z" x [0, ] per With a finite number of transitions (all inside A), and
such that n,(7) = (go), for all z ¢ A and all 7. In other words, Wy, a represents all the
quantum configurations with boundary conditions gg.

A configuration n € €2 is said to be in the sate g € G at x whenever ny ;) = gy (). If
there is no such g € G, the configuration is said to be classically excited at x. Let E(n)
be the set of excitations of n, i.e.

E(n) ={z € Z" : ny(y) # gu(z) V9 € G}. (7.17)
Similarly, we define the excitations of a quantum configuration w to be
Ew)= U (Ax14)U U (E(n(r)) x1). (7.18)
Acw sl

sF | per

We need a notion of connectedness on T = Z" X [0, 3] per and we choose the most
intuitive one; a subset B C T is connected if for any (z,7),(z',7") € B, there exists a
sequence ((2o,0), (Z1,71),- - -, (Tk, 7)) With (zo,70) = (z,7), (zk, %) = (&', 7), (zj,75) €
B,0 < j < k, and for all j: either [|[z; —2;—1| =1 and 7; = 7j_4] or [z; = z;_; and
one of the segments x; x [1j_1, 7}], x; X [1j, 7j_1] is included in B].

Then for all w € Wy, a, E(w) decomposes in a unique way into a finite number of
connected components. We define a quantum contour y to be a pair (B,wp) with B C T
connected and wp is the restriction of a quantum configuration to B (we suppose here
that w is such that no transition intersects both B and its complement; we do not define
w in this case).

A set I" of quantum contours is admissible and compatible with the boundary condition
go if there exists a w € Wy, o that has I' as set of quantum contours. Let Gy, o be the
space of all such I'. Since there is a bijection between Wy, A and Gy A, we can rewrite
(7.16),

Tr K e PHoon = / dTpg (1), (7.19)
Ggo.A
where
,OK(F) = (nF(_0)| K |n1"(_|_0)> e~ foﬁ dTVXO(nF(T)) H (’n,F(TA o 0)| (_TA) |n1"(7_A + 0))
AcwT
(7.20)

(the product over transitions is ordered according to the times at which they occur). We
denote by w! (resp. nl') the quantum contour (resp. the space-time configuration) that
corresponds to I'. We also introduce the shorthand [d(z,7) for [dr .

LEMMA 7.2. The contribution of an admissible set of contours T factorizes into con-
tributions of its elements; more precisely,

o) =[] Ol pe(vie) T[T o) (7.21)
Se yel\{vx }
where
Wy = {(z,7) € Z" X [0, Bl per : N2y (T) = gu(a) }3 (7.22)

. F . . . . e I . .
SINCe Ny 08 constant except for a finite number of discontinuities, W, is a union of ver-

tical segments; we define its length |Wg| as the sum of the lengths of the vertical segments.
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The weights of the contour v = (B,wp) is

p) =TT /(4 =00l (~Ta) In"(ra + ) exp{~ [ dw1)@a(miy (D)} (729

AEwB B

and, for a K-contour yg = (B,wp),

pi(7K) = (N (=0)| K [n7% (+0)) [] (n"(7a — 0)| (~Ta)|n " (4 +0))
Acwp

exp{ - /B Al T)0u(n%, (7). (7.24)

The proof of this lemma is not hard in the case of spin or boson systems, using the
fact that two operators with disjoint supports commute. In the case of fermion systems
there is an additional sign due to the anticommutation relations between creation and
annihilation operators, and the factorization of this sign is not obvious. Ideas how to
solve this problem were proposed in [MM 1996] in the case of the Falicov-Kimball model.
However, the first full proof in the general case is in Section 4.2 of [DFF 1996]. It is nicely
written, and rather than reproducing it verbatim here, we present a geometric argument
that works in most of the situations, although it is less general.

Argument for the factorization of the fermionic sign :

Let J denote a “jump”, i.e. a pair (<z,y>,0), where z,y € Z”, and o represents an
internal degree of freedom of our fermion, for instance a spin. We set Ty = c};gcm. We
give ourselves a set Ja of sets of jumps, and consider an interaction T that is given by

Ty = Z tr ...t]mle...TJm, t]i e C (725)
{J1yes Jm }ETA
Expanding the partition function of a model with this quantum interaction, we arrive at
a space-time picture with contours. Except for the sign, we can factorize the contribution
p(T") of a set of contours I', namely,

Zgn(A) = /g ar T e @l () [T ) (7.26)

90,7 geG ~ver
with

50 = ([T(=t0) exp{~ [ alw. 1ot (7} (7.27)
Jey B

A natural notion here is that of trajectories. The trajectory of a particle of spin o
is a sequence 0 = (0,20, T1, -, Tm;TL,- -+ Tm); o, - - -, Ly are the successive positions in
space; 7j, 1 < j < m, is the time at which a jump from z; ; to z; occurs. The final
position is the site x,,, which is not necessarily equal to z;. To any quantum configuration
corresponds an (admissible) set of trajectories © = (61,...,0;). Let Ty, o denote the space
of admissible sets of trajectories with jumps in A (as before, g is the boundary condition).

The partition function (7.26) can be written in terms of trajectories

Zy0(A) = / e exp{— / d(z,7) 84 (ndy (T))}g(@) 1Tt (7.28)
Tgo.1 Ta 9€0 Jeh

If T and O represents the same quantum configuration, then (T") = £(©). Moreover, if we
view ng(0) as a (finite) sequence of particles, ordered according to some predefinite order

on sites and spins, then © describes a permutation of this sequence. Namely, the image
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of an element (z,0) is the the element (z',0) such that there is § € © with 6 = (o;21 =
T,T2,...,Tm =';T1,...,Tm). The sign of this permutation is equal to £(0).2

The idea behind this argument is to replace a set © of trajectories by an equivalent
set ©', that has identical trajectories outside of contours, and that defines the same per-
mutation. This is illustrated in Fig. 7.1. The new set of trajectories allows to define
transpositions, that depends on the contours only, and such that the total permutation is
a (time-ordered) product of these transpositions. The sign attributed to each contour is
thus +1 for a contour with an even number of transpositions, and —1 if this number is

odd.
3 (3) (2) (1)

Y
Yo

0
) ) 3) A

FIGURE 7.1. Symbolic picture with two contours v; and 72, and three trajectories. Orig-
inal trajectories (full lines) are equivalent with new trajectories (dotted lines inside con-
tours) with transpositions (dark horizontal lines). Resulting signs are ¢(y1) = +1 and

e(y2) = —1.

To define the new trajectories, we first consider the vertical lines obtained by the pro-
longation of all segments of trajectories outside of the contours. Intersections between
trajectories and boundaries of contours form the “entrances” (ni,...,n,) and “exits”
(%1,...,7n). Remark that intersections between the new vertical lines and the boundaries
of contours yield the same entrances and exits. Entrances and exits are ordered in increas-
ing times. In the new trajectories all the particles are supposed to go straightway, until
the first exit x; occurs. We check which particle is leaving the contour at x;. If this par-
ticle is supposed to be on another trajectory, then we define a bridge (i.e. a transposition)
between the other trajectory, and the one that is leaving.

Then the particles are again supposed to go straightway, until the time when x5 occurs.
Again, we check whether a new bridge has to be defined. We repeat this procedure until
the last exit of the contour has been met (notice that no transposition is ever defined with
the last exit). An important remark is that the decision to define a bridge depends only
on the given contour, since only a particle that previously entered, can leave.

As a result, we have that the total permutation stemming from O is given by a time-
ordered product on the transpositions. This permutation clearly does not factorize with
respect to the contours, but its sign does. This concludes the argument for the factorization
of the sign.

So far we have obtained a contour model which is a suitable starting point for applying
Pirogov-Sinai theory, except that the contours have support in a continuous space. One

’In fact, this is certainly true, but not mathematically obvious; this would require a proof, if this
discussion pretended to be more than an argument.
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way is to extend the Pirogov-Sinai theory to this situation; this is done in [DFF 1996].
However we proceed here as in [BKU 1996]; we discretize the continuous direction by
introducing B, M with g = BM, and we obtain the lattice Ly .

For a given quantum configuration w € Wy, x, we introduce quantum and classical
excitations:

Eg(w) = {(g:,t) eL: [U (Ax7a)] NC(,1) # @} (7.29)
Eo(w) = {(2,) € L\ Eq : nuy()(B1) # gun)Vo € G . (7.30)

Decomposing Eg(w) U Ec(w) into connected components, we obtain the supports of the
contours; the component touching Supp K x 0 yields Yx. The labelling is determined by
the configurations on the complements of the supports of the contours.

The weight of these contours p(Y') is a complicated but well-defined expression, that
is an integral over all sets of quantum contours having supports on U, y)esuppy € (z,t),
and compatible with the labelling. The weight px(Yk) contains moreover a contribution
of the local operator K.

This concludes the proof of the point iv) of the proposition.

O

PROOF OF PROPOSITION 7.1 v). Let us start by the part of the contours with quan-
tum transitions. We consider a connected set A C A and a time ¢ € {1,..., M} such that
(A x t) C SuppY, where Y is a contour. We have to show that

_ (0)
MY Y Y o Sreatenl)
o< <.. Tm<ﬁ

m 21 AL A (D O0)
U; A ZA A A

e (M) Xoea <I>m("§7()w)) . ef(ﬁLTm) Loea <I“ULEJW(??)) ‘(n(O)|TA1 |n(1)> - (n(mfl) |Ta,, |n(m)>‘

is a small quantity, uniformly in the initial configuration n(®). Remark that the configu-

rations are such that ni‘lc) = ng]c),, cee n%) = n(ATfl).

A geometrical representatioln of this sum is lTseful, see Fig. 7.2. Let © € A. To each
choice of Ay, ..., A, and 7, ..., 7y corresponds a “bush” b, that is, a collection of sets
A, ... Al and vertical segments ¢y, ..., £, C T4, such that

o (A},...,A},) is a permutation of (Ay,..., An); B

e A} 3z, and /; has one end at = x 0 and the other on A} X 74; x is the root of the

bush;

e if there is a vertical segment ¢; between A’ and A;-, then A} @ A;-;

e the graph of m vertices with an edge between 7 and j whenever a vertical segment
connects A; and A’ is connected (or equivalently, this graph is a tree);

o if A} and A;- are connected by a vertical segment, say /;, then no other transition
intersects the set (4; N A%) x £;.

We obtain a bound by considering the (continuous) sum over all bushes. If 7} is the
length of the segment /;, and denoting by h(j;) the configuration immediately before the
transition j if /; lies below AJ, otherwise h(j) is the configuration immediately after, we
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B
—T—
T 1
v A
o 4 J_
0 A

FIGURE 7.2. A “bush” with 6 transitions and 6 vertical segments.

have the inequality

(0) (m)
e T Xaea Pe(ny() o (B7Tm) Ypea Pe(npr))

. €

< o PlAled GBlath)|A] e—nb(\nﬁ’)m) e (B=mm)p(In M4 1)
1) (m)
< o Bl ghatplal o TIGID s mba g D g gy

The first inequality holds because ® € C(Ry, G, Ay, a,b).
Denoting By, , the space of all bushes with root z and at most m transitions, and
[, . db a shorthand for the sum over sets Af,... A}, and time intervals 7,...7,,, with

corresponding restrictions and combinatorics, we have to estimate

lim max/ dbz(b)
B,z

m—00 p,(0) cQ
with

)
. c(2Rp)" |A 7 b(1+|7 4 I)
Z S LI Ta, lny] eI o
Ai Ay () () j=1
A A/ Al! ’A,

where 27 is the configuration just before the j-th transition (possibly 2() = (7).
We proceed by induction on m. First,

c(2Rp)? | A,
Y I M > LU ENIERE

Ap:A=A (D)
141 1nA,1

—%ﬂb(lﬂnf{\)

< 2 max Z Z ‘(n(0)|TA1 |n(1)>‘ ec(QRO)U|A,1‘
A ) 1+ 09
A A sz Ap:A=A n;l) oy
1
<1y fmee]
AA e
2 J||T|| ec(2R0)”
< 2(2Ry)” 7.32
p(2F0) 1 — J||T|| ec2Ro)” (7.32)

Let € = %(QRO)”JHTH e®?F0)” + the bound above is smaller than ¢ if ||T'|| is small enough.
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We consider now the integration over bushes with at most m transitions.

{1+ D
w0 < my B8 5[ e

Al:A 5z A A= (1)

(0] Ta, D] e 415 1_1 >omf

k>0 zj€A]
[P O1Ta, D) omoy 4y 2Ry 1)
<pmp S Xy WA en s e
Ay Ao A A=A (1) Y
1
(7.33)
and we find a bound
D) :T 2R0 c+2£)
2 oy _2Tle ‘.
b 1—2||T|e (2R0)? (c+2¢)

if ||T|| is small enough.

We have to discuss the effect of the local operator K. If K € £(0), it yields a factor
involving ||K|| < oo, and we are done. But if K € £(c), more caution is needed. A term
exp(ck |nsupp k|) appears and acts on the cells just below Supp K x 0. Let A connected
such that A x M C Supp Yk, A N Supp K # @. For any choice of quantum transitions
(A;,7;), the space-time configuration n in the cells centered on the sites of A x M has
constant number of particles. Therefore

exp(cxlma(B)]) = exp(% /Oﬁ drin.(r)])- (7.34)

The only effect is to change b into b — ¢x /3 in (7.31). It is bigger than 0 if 3 is large
enough (depending on cg).

Having checked that the contribution of the quantum excitations has exponential de-
cay, there remains to verify the same for the classical excitations. It is a much easier
task.

Let Ec C SuppY. The space-time configuration is constant on F¢, and moreover it
has to be classically excited. Since ® € C(Ry, G, Ag, a,b), properties (2.12) and (2.13) are
valid, and we obtain a bound, for each site of F¢,

efseg[ RS e—B(bmu—a)]

ng:ng| < 2a/b ng:ng|>2a/b

and this is as small as we may need by choosing ¢ large enough. If the local operator
K € L(c) occurs, then we have to choose [ large enough, depending on cg, so as the
expression above remains small.

O

PROOF OF PROPOSITION 7.1 iii). This proofis not hard, but tedious, and rather than
bothering the reader we simply refer to [BKU 1997] — the bound is true because of the
assumptions on the derivatives of the classical energy and on the norm of the quantum
. . P
inferactions ||z =T"#||. _
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Theorems 3.3 and 3.4 are now consequences of the Pirogov-Sinai theory (Chapter 6)
applied to the contour model specified in Proposition 7.1. As for the expectation value
of local observables, there is a difference between the equations (6.17) and (7.13). It
could be possible to modify Proposition 7.1 iv); it is a tedious but straightforward task.
However, since everything is already written down, we content ourselves by observing that
small adaptations of the Pirogov-Sinai theory allow to consider the contour model as it is
specified in Proposition 7.1.



CHAPTER 8

Effective potential due to quantum fluctuations

A partition function is a sum over configurations, with some weight. All the config-
urations have to be considered, because all of them have a weight that differs from 0 (in
general). However, it is useful to imagine that only typical configurations are important;
these typical configurations all look the same (i.e. macroscopic observables take the same
value on all of them), and their total weight is much bigger then the total weight of the
non-typical configurations. In the previous chapter, the typical (space-time) configurations
consisted in a classical ground state, that is constant along the time direction, with rare
contours here and there. We showed that the effect of these contours was unimportant,
but it has to be understood that they were present, and they brought a small correction
to the partition function. Our aim now is to compute the contribution of the contours, at
least the smallest and the most frequent ones, and to show that it can be rewritten as a
new classical interaction.

The motivation to go beyond the study of the previous chapter has multiple origins.

e This allows to compute some thermodynamic quantities where quantum effects are
important. For instance, take an Ising model in a transverse magnetic field: the
Hilbert space H, is the one spanned by the classical configurations oy € {—1, —|—1}A,
and the Hamiltonian is

Hi= Y SOs® - nY s (8.1)

<z, y>CA TEA

The susceptibility in the direction 1,

. 9 .

XD = £ (59, (52)
may be considered as a measure of the quantum fluctuations.

e For models that are stable with respect to the quantum fluctuations, we know that
the low temperature phase diagram is a small deformation of the zero temperature
phase diagram of the corresponding classical model. We may be interested in how
the quantum perturbation moves the coexistence lines.

e The quantum fluctuations may totally modify the features of the low temperature
phases; there are models where the classical interaction has degenerate ground
states, and for which the quantum fluctuations remove the degeneracy.

Actually, we shall concentrate on the last point. Another consequence of this effective
potential is the stabilization of interfaces, see [DMN 1998|.

Systematic approaches to models with degeneracies were proposed first in [DFFR. 1996],
then in [KU 1998]. Of course, we shall follow here the last method, but let us begin with
a quick look on the first one.

Starting from a Hamiltonian H(t) = H® + ¢V, H® bheing a diagonal operator with
infinitely many ground states, and V' the quantum perturbation, the idea is to define an

95
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antisymmetric matrix S = tS1) + $25® and to consider
HA(t) = S H(t)e
Denoting ad ) S = [HO), 8] = —adgH®, H?)(t) is expanded using Lie-Schwinger series

o0 tn
HO 1) =Y —ad3H(1).
n=0

At order t! in this expansion we find ¢tV and tads(l)H(O), and we choose S(!) such that
these terms cancel. At order ¢ we have t2[ad5(2)H(0) +adgo)V + %adg(l)H(O)]. S@) is
chosen so as the off-diagonal terms disappear at this order, and as a result H (2) (t) is
diagonal, up to terms of order #3 or higher. If the diagonal part of H(*)(t) has a finite
number of ground states, and if the excitations cost strictly positive energy, then it can be
shown that these ground states are stable. It is possible to include higher orders in this
perturbation scheme. See [DFFR 1996] for additional information.

1. The asymmetric Hubbard model

Before beginning the full developments in the general situation, we present a heuristical
derivation of the effective potential in the case of the asymmetric Hubbard model. Recall
that the local configuration space is {0, 1, ], 2}; the classical interaction is the on-site term
(Ro = 0).

D, (ny) = L(ngr +ngy — 1)% (8.3)

and the quantum interaction is (T4); A = (< z,y >,0), where < x,y > is a pair of
neighbouring sites, and o € {1,]}. If A = (<z,y>,0), then

Ta = toch cyo- (8.4)

1.1. Duhamel expansion of the partition function. With the use of Duhamel
formula (see Chapter 7) we can get

Zy =Tr e P = Ty = AV-AT

o0

=Tr Z / dry ... drme ™V (=T) e~ 2=V () . (=T) e~ #=m)V
m=0 0<71<...<Ti <0
(8.5)
Expanding the unit operator 1 =) |n)(n| at the right of each operator V, we obtain

DD /
0<T1 < .. <™ <0

m2>20npl . nm A, A
A (<I747y1> gl

e M) (1| Ty [n2) e (RN Ty ply e (Bmm)2(Y) (g 6)

We have the following geometrical interpretation, see Fig. 8.1.

We consider the space-time A x [0, 3]. We sum over an integer m, over Ay, ..., Ay,
on m successive configurations, and we integrate over m successive times Ty, ..., Tp.
The partition function is now a (continuous) sum over all the quantum configurations; it is
specified by a set of transitions (A1, 71), ..., (A, Tm), and by a space-time configurations
n: [0, 0] — {0,1,1,2}", which is constant except at times 7y, ..., 7,,. The second line of
(8.6) gives the weight of a space-time configuration.
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Az = (<y,z>,1)

— A = (<z,y>,1)

FIGURE 8.1

It is useful to consider this partition function as the one of a classical model (in one
more dimension), and to use classical intuition. Namely, at low temperature and with
non zero hopping, we expect that the thermodynamical states will be those that allow
for a lot of quantum fluctuations. This is similar to the cases studied by Bricmont and
Slawny [BS 1989], where low temperature states of classical systems can be chosen by
thermal fluctuations. The nature of quantum fluctuations is however very different, and
we took advantage of the study by Messager and Miracle-Solé of the Falicov-Kimball model
MM 1996].

1.2. Identification of small and big “quantum contours”. See Fig. 8.2. We say
that a space-time site (z,7) € A x [0,0] is ezcited if the space-time configuration takes
value 0 or 2 on (z,7), i.e. [n(7)]x € {0,2}.

8
0u2

T 2

I |
I — \

T o0 2 4L 2+t L L 1t L 1
FIGURE 8.2. Four space-time contours. The first three are b
small quantum contour.

>

|
I A
W

hile the last one is a

18

Quantum contours are formed by connected sets of excitations and transitions. They
are small if there are only two transitions of 1 spins, otherwise they are big. Let -y denote
a big quantum contour, and £ denote a small one. We have the following decomposition
of the partition function

Zx = [ dne(T'(n)) 2(7) d= | | 2(§). (8.7)
! / vegn) Py/EN" 561_15

The first integral is over space-time configurations n such that all their contours are big;
we denote the set of contours by I'(n). The set of small contours E is such that there
exists a configuration n’, which coincides with n outside of the supports of small contours.
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The sign ¢(I'(n)) = %1 is associated with the permutation of the electrons due to I'(n)
(it is present because we have fermions). The weights are given by

= I to)erz0. (8.8)
A=(<wy>,0)€Y

Here £y(vy) is the vertical length of y. The same equation holds for z(£); but since £ has a
simpler structure, so does its weight, which can be written as

2(6) = e 7000, (8.9)

Remark that the constraints over big quantum contours are non-local; indeed, we
can have a situation as displayed in Fig. 8.3. The two contours have disjoint supports,
and because of the periodicity in the time direction, it is impossible to have one contour
without the other.

-

ODQ
I B e e B I B e e B
Lt A

FIGURE 8.3

On the contrary, the constraints on the small quantum contours, for a given n, are
local (namely, only non-intersection), and hence we can apply cluster expansion techniques.
However, we proceed here with this expansion more naively and non rigorously, since it is
simpler.

1.3. Expansion of the small quantum contours. Since z(£) is a small quantity,
the small contours are rare and the condition of non-intersection is irrelevant; therefore
we can approximate'

og[ [ a=T[ =] ~ [ aex(o

£E=E

-y [ 220
= Z A dT/gzn,Suppga(x’g) dfm (810)

<t,y> =(<ry>,1)e

The small quantum contours cannot intersect the big ones. But releasing this con-
straint only means a small change on the contributions of the big quantum contours, and
since the latter will be shown as being unimportant, we can do this approximation.? Hence

! This step can be achieved rigorously using cluster expansions. Extra terms appear and they are not
local; but their contribution decays exponentially fast with their size.
2This may also be set rigorous by considering “decorations” of the big quantum contours.
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we write,
22(¢)
dr / trmics, d¢ . (8.11)
<§>/ /Nn Supp§9 x 7' %>/ SH;I;&;:ITTeE 2o(&)
3y )
We define now the effective potential W, 3 (ny43)
Uiz (Mayy) = _/ €Ny ) dfm- (8.12)

Supp £3(x,7)
A=(<m,y>1P)€EE

Let us compute it explicitely (see Fig. 8.4).
o [fngy € {(14), (L1} we have

) 00 00 e*TQU
Viay (Ngagy) = 11 /0 dr / dre—
T1

00 00 e*TQU
= —t%/ dTQ/ dr I [7'2 > 7'1]
0 0 T2
9
= —t%/ d7—2 e_TZU
0

ﬁ
U
o If N{z,y} gé {(Ta i)a (\l/a T)}a it s zero.

We see that the effective potential favours pairs of opposite spins, hence we expect to
have chessboard-like structure.

T1
T2

roy

FIGURE 8.4

1.4. Definition of a classical contour model. Let us come back to the partition
function. With the expansion of small quantum contours, and with our approximations,
Equation (8.7) becomes

7y ~ / ane(0(m) ] =esp[- Y / ATy (0 (7)) (8.13)

~v€T(n) <T,y>

with the weights of the quantum contours given by (8.8). We redefine now the big quan-
tum contours, by considering the pairs (1,1) and (},]) as excited, see Fig. 8.5. Now, an
admissible set of contours T' specifies the whole quantum configuration n.?

3The contour model that we define here is different from the setting introduced in Chapter 6. However,
we only need in this heuristical discussion a model where it is plausible to apply the Peierls argument.
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g

]

U
— 1+
LI S Sy B I A
FIGURE 8.5. Three contours; their supports are formed excited sites with 0 or 2 particles,
or by excited pairs with same spins.

>

Then we obtain

Ty = ¢ OIE/U / ar I 5(v) (8.14)

y€eT

with the new weight given by

t2
=0 JI  to)elty)e 7070, (8.15)
A=(<zy>,0)EY

The length £(7) is the vertical length of the part of Supp~y that is formed by pairs (1, 1)
or (},1). e(y) = £1 is a sign due to the fermionic character of the particles. Actually, it
is not easy to show that the initial (") factorizes with respect to the contours; it is done
in Section 4.2 of [DFF 1996].

1.5. Peierls argument. The weight of the contours decays exponentially quickly
with respect to their lengths, so we are in the situation where the Peierls argument applies
[Pei 1936, Dob 1965, Gri 1964]. Heuristically, contours are rare, and therefore the “typical
space-time configuration” is a constant chessboard. Therefore the expectation value of any
local operator is, up to small corrections, the matrix element of this operator with respect
to the chessboard state.

2. General system

This section is a rewriting of the previous one; however, we consider now a more
general class of models (satisfying the assumptions of Section 4, Chapter 3), and the
approximations above are turned into a rigorous treatment.

2.1. Contour representation. As discussed in Chapter 7, we can suppose that our
Hamiltonian is translation invariant.
We expand e PHX™ with the Duhamel formula, see Chapter 7. As before, we get

_ per
e 6HA — E E / dTl . dTm
m>0A1, . Am 0<71<...<Tn <8

AiCA

o VT Ta, e~ (T2—m)VPer Ta,...Ta,, e Bmmm)VPer (8.16)
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Inserting the expansion of unity I3, = 2, [na)(na| to the right of operators Ty, we
obtain

7=Y ¥ Z/ dr ... 7y

m>07’LA, ’nA Al’ ’ <7'1< <Tm<ﬂ
ACA

-7 VAper (n/l\)

e ()| Ta, [n3) e 2 mIVETOD (0| Ta,, [n})e B0 - (8.17)

Recall that we interpret this object as a classical partition function on the (v + 1)-
dimensional space A x [0, 3] per. Namely, calling the additional dimension “time direc-
tion”, the partition function Z{ is a (continuous) sum over all space-time configurations
ny = na(7), 7 € [0,5], and all possible transitions at times corresponding to disconti-
nuities of na (7). Notice that n(7) is periodic in the time direction. Thus, actually, we
obtain a classical partition function on the (v + 1)-dimensional torus Ty = A X [0, 5]per
with a circle [0, B]per in time direction (for simplicity we omit in Ty a reference to 3). In-
troducing the quantum configuration wr, consisting of the space-time configuration n (7)
and the transitions (A;,7;) at corresponding times, we can rewrite (8.17) in a compact
form

23 = [ dwrprwr,) (8.18)

with pP® (wT,) standing for the second line of (8.17).
Now, we are going to specify excitations within a space-time configuration n and
identify classes of small excitations — the loops* — and large ones — the quantum contours.
A configuration n € €2 is said to be in the state g € G at site z whenever ny ;) = gy (a)
(notice that, in general, g is not unique). If there is no such g € G, the configuration n is
said to be classically ezxcited at x. We use E(n) to denote the set of all classically excited
sites of n € Q%". For any A C Z", let us consider the set Wper of quantum configurations

on the torus Tp. Whenever w € WA, its boundary B )( ) C Ty is defined as the union
B(w) = (Urego g(B(n(r)) x 7)) U (U (A; x 73)). (8.19)

The sets A; x 7; C Ty represent the effect of the operator T and for this reason are called
quantum transitions. Tt is worth to notice that the set B (w) is closed.

Next step is to identify the smallest quantum excitations — those consisting of a
sequence of transitions from the list S. First, let us use B (w) to denote the set of
connected components of B (w) (so that B (w) = Upep©)(w)B). To any B € BO) (w)
that is not wrapped around the cylinder (i.e. for which there exists a time 75 € [0, 3] per
with BN (ZY x 75) = &) we assign its sequence of transitions, S(B,w), ordered according
to their times (starting from 75 to 8 and proceeding from 0 to 7g) as well as the smallest
box B containing B. Here, a box is any subset of Tz of the form A x [y, 75] with connected
A C Z" and [y, 2] C [0, 8] per (if 71 > T2, we interpret the segment [77, 73] as that interval
in [0, B]per (with endpoints 71 and 72) that contains the point 0 = 3).

We would like to declare the excitations with S(B,w) € S to be small. However, we
need to be sure that there are no other excitations in their close neighbourhood. If this
were the case, we would “glue” the neighbouring excitations together. This motivates the
following iterative procedure.

“Even though the present framework is more general, the name comes from thinking about simplest
excitations in Hubbard type models. Namely, a jump of an electron to a neighbouring site and returning
afterwards to its original position.
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Given w, let us first consider the set B(()O) (w) of those components B € BO)(w) that
are not wrapped around the cylinder and for which S(B,w) € S, where S is the set of all
subsequences of sequences from S. Next, we define the first extension of the boundary,

BW(w) = (U B)U (U B).

BeBO) (w)\BY (w) BeBY (w)

Using B (w) to denote the set of connected components of BM) (w) and B((]l) (w) € BV (w)

the set of those components B in B (w) that are not wrapped around the cylinder and
for which® S(B,w) € S, we define

, - .
B (w) = (UBEB(l)(w)\Bél)(w)B) U (UBEB(()I)(U)B)'

[terating this procedure, it is clear that after a finite number of steps we obtain the
final extension of the boundary,

B(w) = (U B)U (U B).

BeB® (w)\B (w) BeBM (w)

Here, every B € B((]k)(w) is a box of the form A x [r, 7] (that is not wrapped around

the cylinder) and S(B,w) € S. Let us denote B(w) = B(()k)(w) and consider the set

By(w) C B(w) of all those sets B € B(()k)(w) for which actually S(B,w) € S and, moreover,
na(11 —0) =na(m2+0). Finally, let Bj(w) = B(w) \ Bo(w) — “1” for “large”: it represents
the set of all excitations of w that are not loops. Taking, for any closed B C Ty, the
restriction np of a space-time configuration n to be defined by (np).(7) = n,(7) for any
z X T € B, we introduce the useful notion of the restriction wp of a quantum configuration
w to B as to consist of ng and those quantum transitions from w that are contained in
B, A x T C B (we suppose here that w and B are such that no transition intersects both
B and its complement; we do not define wp in this case).

Now the loops and and the quantum contours can be defined. First, the loops of a
quantum configuration w are the triplets £ = (B, wB,gg); B = A x [r, 1] € By(w) is the
support of the loop & and gg =na(m —0) = na(m + 0), a restriction of a configuration
g € G. (While the configuration g is not unique, its restriction to A is determined by the
loop £ in a unique way.) We say that £ is immersed in g. Given a quantum configuration
w, we obtain a new configuration @ by erasing all loops (B,wB,gg), i.e. for each £ we
remove all the transitions in its support B and change the space-time configuration on B
into ¢ € G into which ¢ is immersed. Let us remark that B(w) = Bj(w). Notice that,
since we started our construction from (8.19), we have automatically diam A > 2R, for
a support A X [y, 72| of any loop &.

Quantum contours of a configuration w will be constructed by extending pairs (B, wp)
with B € Bj(w) by including also the regions of nondominating states from G. Namely,
summing over loops we will see that “loop free energy” favours the regions with dominating
configurations from D C G. However, to recognize the influence of loops, we have to look
on regions of size comparable to the size of loops. This motivates the following definitions
with U'(z) = {y € Z",|z — y| < R} being an extension of original neighbourhood U (x).
Thus, we enlarge the set E(n) of classically excited sites to E(n), with

E(n) ={x € Z" : nyy(y) # gur () for any g € G}

5A set B € B\"(w) may actually contain several original components from B{” (w). We take for
S(B,w) the sequence of all transitions in all those components.
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and we introduce the set F'(n) of softly excited sites by
F(n)={z € Z"\ E(n): nyr(e) 7 dyr (e for any d € D}.

Then, for a quantum configuration such that w = @, we define the new extended boundary

m
B@ = U ([BEem)urmm) <) JU(LY, U] xn),

T€[0,8] per =1 PE
and if w # @, we set Bo(w) = Be(w). Notice that B(w) C Be(w), since the first
set is the union of classical excitations, quantum transitions and boxes; obviously the
classical excitations and the quantum transitions also belong to Be(w), and the boxes
being such that their diameter is smaller than 2R and they contain U (z)-excited sites at
each time, they are U’ (z)-excited. Decomposing B (w) into connected components, we get
our quantum contours, namely v = (B,wp). Notice that the configuration wp contains
actually also the information determining which dominant ground state lies outside B. We
call the set B the support of v, B = Supp-y, and introduce also its “truly excited part”,
the core, corey C Supp+, by taking

corey = Supp~y ﬂ(UTG[O,,B] ver (E(n(T)) X 7') Uig([IgAi U’(q;)] X Tl))

Finally, notice that if the contour is not wrapped around the torus in its spatial direction,
there exists a space-time configuration w” and we have B = Bo(w”).
A set of quantum contours I' = {v1,...,7;} is called admissible if there exists a

quantum configuration w' € WP which has I as set of quantum contours. Clearly, if it

exists, it is unique under assumption that it contains no loops (w' = &").5 We use G Eer
to denote the set of all collections I" of admissible quantum contours.

Given T' € GP, a set of loops 2 = {&;,..., &} is said admissible and compatible with
I if there exists w!'“= which has Z as set of loops and T as set of quantum contours (it is

also unique whenever it exists). More explicitly,
e two loops & = (B,wB,gg) and ¢ = (B’,wjg,,gg,) are compatible iff B U B’ is not
connected;

e using corel’ = U,crcore, a loop & = (B,wB,gg), with B = A X [1, 72}, is com-
patible with T iff

B U coreT is not connected, (8.20)
gg =nl(r) Vre[n,mn); (8.21)
e a collection of loops E = {&1,...,&} is admissible and compatible with T iff any

two loops from = are compatible and each loop from = is compatible with T'.

We use Q}{)Op (T") to denote the set of all admissible collections = that are compatible with
r.

The conditions of admissibility and compatibility above can be, for any given set of
transitions {A4,..., A}, formulated as a finite number of restrictions on corresponding

transition times {7y,...,7,}. Given the restrictions on admissibility of I' € G, the

restrictions on = to belong to gfop (') factorize. As a result, the partition function Z{

in (8.18) can be rewritten in terms of integrations over G and Q}{)Op (T') [the summation

Tn fact, it is unique on the projection of SuppT on ZY; but from now on, we suppose that T’ also
contains information on which configuration of G lives on A\ Supp I’ (when G is finite, this remark is not
relevant).
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over I' and E accompanied with the integration, a priori over the interval [0, 5], over times
7; of corresponding transitions, subjected to above formulated restrictions, c.f. (8.17)].
Furthermore the contribution of I' U= factorizes as a contribution of I' times a product of
terms for ¢ € = [BKU 1996, DFF 1996]7, we get

per dr per (wFUE)
g per loop

= deper(wF) / d2 [ 2(¢). (8.22)
/vg/{)er g}{)op (F) H

(€=
Here, using {(A;,7;),i = 1,...,m} to denote the quantum transitions of I' U E, we put
m
pper(wFU:) _ H<n1;‘LzJ (r; — 0)| T, |nFU“(7'i + 0)>exp{— . d(z,7)P, (nII}L(J“)(T))},
i=1
(8.23)

where [ d(z,7) is the shorthand for foﬂ dr Y (used here for B = T}). Similarly
for pP'(wl). Further, the weight of a loop ¢ = (Bg,ng,gg) with the set of quantum

r:xXTEB

transitions {(A;,7;),i = 1,...,¢} and n¢ the space-time configuration corresponding to
Wpe, is

(&) = exp{— /B . d(z, 7)[@(nf, (7)) - @x(gé(z))]}@il | Ta, In&y, (11 +0)) x
x (nfy, (12— 0)| Ta, [nS, (2 +0)) ... (0 (e — 0)| Ta, lg5,)- (8.24)

Given I' € G{*, the second integral in (8.22) is over the collections of the loops that
interact only through a condition of non-intersection. This is the usual framework for
applying the cluster expansion of polymers.

Recall the definition (5.18) of the truncated function; here Supp ¢ = B¢.

We use £, and Cp to denote the set of all loops and clusters, respectively, and use
fc dC as a shorthand for 37, - fLA dg--- fLA d¢,, in obvious meaning. Whenever I' €

Qper is fixed, we use L, (T') to denote the set of all loops compatible with T' and write
C € Cx(T") whenever the cluster C contains only loops from L (T"). Again, ch(F) dC

is a shorthand for ) >1 i) £A(T) dé;--- [ £A(T) d¢,. Finally, we also need similar integrals
conditioned by the time of the first transition encountered in the loop £ or the cluster C.
Namely, using C to denote the support of C, i.e. the union of the supports of the loops
of C, and Ic = {11(C),m2(C)} to denote its vertical projection®, I = {1 € [0, 8] per :
Z¥x1tNC # &}, we use C[(\ ™ for the set of all clusters C' € Ca with the first transition time
71(C) = 7, for which their first loop & with support B; = A; x[11(C), 72], contains the site
z, A1 > z. Then [ @) d¢ and [ e dC are shorthands for the corresponding integrals

with first transition time fixed — formally one replaces [d¢; by [ I [A 2 z]d(r (&) —
7)d&;. With this notation we can formulate the cluster expansion lemma.

"The factorization is clear for spin or boson systems; for fermions it is delicate because of the anticom-
mutation relations between creation and annihilation operators, but factorization holds. See the discussion
in Chapter 7, and the proof in [DFF 1996], Section 4.2.

8 Again, if 71 > 7>, the segment [1, 2] C [0, 3] per contains the point 0 = 3.
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LEMMA 8.1. Cluster expansion.
For any c € R, a; < (2Ry)™Y, ag < R™%Aq and § > 0, there exists g > 0 such that

whenever |T|| < g9 and I’ € GY*, we have the loop cluster expansion,

/gkmp - =[] #(¢) = exp{/CA(F) dC<I>T(C)}. (8.25)

Moreover, the weights of the clusters are exponentially decaying (uniformly in A and (3):

/ dC1[C 3 (z,7)][8T(C)| J[ oot lelTDialaalBl ¢ 5 (8.26)
Ca teC
and
/ aC|BT(C)| T eleeroelThlAr+aBl o 5 (8.27)
ci” ¢eC

for every (z,7) € Ty.

PRrROOF. It is very similar to the proof of Proposition 5.3. Assuming that inequality
(8.27) holds true, we have a finite bound

1 . o
> - /EA(W déy ... déulp (g(&,...,fn))li];[l|z(§z)| < IBIA. (8.28)

n>1

Lemma, 8.1 then follows from Proposition 5.4. Let us turn to the proof of the two inequal-
ities. Let

F(&) = |2(¢)] elemar logITIDIA[+az|BI
Skipping the condition that &; is compatible with T', we define

I, = n[/£A d& 1 [By 3 (z,7)] + /E(A) ¢ | /£X‘1 dés ... deale" (€L, .. )] il;[lf(gi)
(8.29)

(it does not depend on (z,7) € Tp). The lemma will be completed once we shall have
established that I, < n!(%&)" (assuming that 6 < 1; otherwise, we show that I, <
n!/2"). From Lemma 5.5, we get

0" (&1, 6n)] < > I[I 1[BinB]. (8.30)

T tree on n vertices e(i,j)ET

Denoting 41, ...,%, the incidence numbers of vertices 1,...,n, we first proceed with the
integration on the loops j # 1 for which 7; = 1; in the tree 7, such j shares an edge

only with one vertex i. The incompatibility between ¢; and &;, with { = (Bi,wgz, gf{'i),
B; = A; x [Tl(i), TQ(i)], and similarly for {;, means that either B; U[A4; x Tl(i)] is connected,

or [Aj x 7Y )] U B; is connected. Hence, the bound for the integral over the ¢; that are
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incompatible with &; is

/ d¢; I [Bj N B; connected] f ()
La

< wlal [ agT(B; s @olse) +2in [ d6eE)

< w(iad+alml)( [ agrms@olser+ s [ i) s

(The constant « has been introduced in order to match with the conditions of the next
lemma). Then

no<aey Y [ aatime @ole [ aa]re(1aikalm)”

T tree of n vertices

IT|[ atim s @l () s [ agse(aam) |
=2t ea G

(8.32)

Now summing over all trees, knowing that the number of trees with n vertices and incidence
numbers i1, ...,i, is equal to
(n—2)! < (n—1)!
(i1 — Dl (i = D! 7 gl — D (i — 1)V

we find a bound

I < nl2v)""'(1+a) [ /ﬂ AEL[B 3 (w,7)] f(§) el + é /ﬂ o, dEf(©el el
! (8.33)

We conclude by using the following lemma which implies that the quantity between the
brackets is small.

Remark: we used here translation invariance of the Hamiltonian, since we assumed
that the objects do not depend on (z,7) € Tzv. However, in view of the proof that states
are thermodynamically stable, we must allow perturbations which are not necessarily
translation invariant. This objection can be answered easily by choosing for f(£) a bound
that is uniform in the location of &.

n

O

LEMMA 8.2.
Let oy < (2Rg) ™" and ag < R™?"Ag. For any ¢ € R and § > 0, there exists g9 > 0
such that whenever ||T|| < eo the following inequality holds true,

[, (B> @ i@l ooty [ agfele o eTDisen
LA clem)

where (z,7) is any space-time site of Ty .

PRrROOF. Let us first consider the integral over ¢ such that its box contains a given
space-time site. We denote by #; the number of quantum transitions of ¢ at times bigger
than 7, and ¢y the number of the other quantum transitions. The integral over £ can be
done by summing over (¢ +/5) quantum transitions Al, ..., Aél, A2, Aé, by summing
i,j 1

over (/1 + /2) configurations n;;, and by integrating over times 7y < --- < 7'411, <<
J
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Tg2 Let us do the change of variables 7| = 7! —7, 71 =} — 7] ... %}1 = Tell - 7'41171,
and T 7'1 =7 — 7'12, e 7'£22 = 7522_1 Tb. Then we can write the following upper bound
/ AET [B 3 (z,7)]|2()] ele— o8 ITDI Al ool B
LA
00 L i1
~1 ~2 aJ
<X X X[ 1T Tyl
l1,02 > 1 ,41 2 ni;ll’ ,TZZ?%GA 1=1,2 j=1
U,,]A =A>zx

A connected

(e log |TI)IA}| o7 Soc al®anifly)~®elou)] 7Rz (g 34)

where g4 € G4 is the configuration in which the loop £ is immersed (if the construction

does not lead to a possible loop, we find a bound by picking any g4 € G4). Remark that
. . 1,1 2,1 .

we neglected a constraint on the sum over configurations, namely n ;" = n’" . It is useful

to note that the sums over #1,#5 and over the quantum transitions are finite, otherwise

they cannot constitute a loop.
Using the definition (2.18) of the norm of a quantum interaction, we have

> lnplTalnp)| < 177,
A:A=B
Furthermore B
N [@a(n) — Pulgu(@)] = RAq
zCA
as claimed in Property (3.4). Hence we have, since the number of configurations on A is
bounded with S‘A|,

/ déln [B = (x,r)] |z(&)] elc—a1log | T())|Al+az| B
L

|A%|
||T||1 a1(2R0)” g oe(2R0)” ] j
< D Z 11 H = ; . (8.35)
b1 AL i=1,2 j=1 Ao — Rrar

Ui,j A] ABI
A connected

This is a small quantity since the sums are finite, by taking ||T'|| small enough. Now we
turn to the second term, namely

/ de|2(€)] elemon o8 ITIDI A+ B
clem)

The proof is similar; we first sum over the number of transitions ¢, then over ¢ transitions
A, ... A, with A = U;A; > z, A connected. Then we choose £ — 1 intermediate configu-
rations. Finally, we integrate over ¢ — 1 time intervals. The resulting equation looks very
close to (8.34) and is small for the same reasons.

O

Now, we single out the class of small clusters. Namely, a cluster is small if the sequence
of its quantum transitions belongs to the list S. To be more precise, we have to specify

the order of transitions: considering a cluster C = (£1,...,&;) and using S(¢W), ¢ =
1,...,k, to denote the sequence of quantum transitions of the loop £ = (B, w p), gg([) ),
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S0y = $(BW, w B0 ), we take the sequence S(C) obtained by combining the sequences
S(EW), ..., S5(®) in this order. A cluster C is said to be small if S(C) € S, it is large
otherwise. We use C Xmau to denote the set of all small clusters on the torus Ty.

The local contribution to the energy at time 7, when the system is in a state ’I’LU(I)(T),
is ®y(ny(z)(7)). Similarly, we will introduce the local contribution of loops (and small
clusters of loops) in the expansion of the partition function — the effective potential
\I/i(nA(T)). The latter is a local quantity in the sense that it depends on n only on the

set A at time 7. An explicit expression of \Ili(g 4) with g € G is, in terms of small clusters,

TP (ga) = — qu)T(C)]I[CN Ac = A, Ic > 0] (8.36)
alga) = o omalt | ga,Ac = A, ¢ . .
A

Here, again, C is the support of C, A¢ its horizontal projection onto Z", Ac = {z €
752 x [0, Blper NC # @}, and I its vertical projection, |A¢| and |I¢| their corresponding
areas, and the condition C ~ g4 means that each loop of C is immersed in the ground
state g. Notice that the “horizontal extension” of any small cluster is at most R: if C is
a small cluster, diam(A¢) < R. The definitions of Section 4.2, Chapter 3, are now clear,
once we identify the effective potential ¥ defined in (3.5) as the limit 8 — oo of (8.36).
Namely,
U = lim WP

B—00
Our assumptions in Section 4.4, Chapter 3, concern the limit 8 — oo of the effective
potential, but at non zero temperature we have to work with U?. To trace down the
difference, we introduce 1® = U8 — ¥, Notice that (8.36) implies \Ili(n 4) = 0 whenever
ng ¢ G4 or diam A < 2Ry.
Recalling that if C' C Tjy, C is the smallest box containing C, we introduce, for any
cluster C € C ﬁmau, the function

() r r

dT(]I [C ~T] = T[nh,(r) € Gap, C ~ nAC(T)]). (8.37)
[Ic| I ’ ’

Here, the first indicator function in the parenthesis singles out the clusters such that each

loop is compatible with I', while the second indicator concerns the clusters for which

ngc (T) € G, and each of their loop is immersed in the configuration n',(7) (extended as

a constant to all the time interval Ir). Observing that ®T(C;T') = 0 whenever CNcorel’ =
emptyset, we split the integral over small clusters into its bulk part expressed in terms of
the effective potential and boundary terms “decorating” the quantum contours from I'.

aT(C;T) =

LEMMA 8.3.
For any fized I € Gy, one has

/ 1C3T(C) = — / d(A, 1) A(ny (7))
C gmall(T) T

—/ d(A,T)z/)ﬁ(nl;(T))Jr/ dca™(C;T).
Ta

Cima,ll
The term ®T(C;T') vanishes whenever C N coreT = &.

PRrOOF. To get the equality of integrals, it is enough to rewrite

/ dce’(C) = / dce'(C)I[C ~T] (8.38)
Cima“(F)

small
CA
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and

T(c
—/TAd(A,T)\Ifﬁ(nQ(T))z/ qu)u(d)/ dr1 [l (7) € Gac, C ~ ()]

Cimall Ic
(8.39)

Moreover, whenever C' N coreT’ = &, the configuration ngo (7) belongs to G 4., and it is
constant, for all 7 € I. Under these circumstances, the condition C ~ T is equivalent to
C ~ nl () and the right hand side of (8.37) vanishes.

¢ 0

Whenever T' € G, is fixed, let W4(T') C Tp be the set of space-time sites in the state
d,i.e.
Wy(T) = {(z,7) € Ty : n{,,(x)(T) = dyr(g)}-
Notice that

Ty =Suppl'U U Wu(T); Wa(D) N Wy (D) =@ ifd#d,
€

and the set Supp' N Wy(T") is of measure zero (with respect to the measure d(z,7) on
Tp). Let us recall that the equivalent potential T satisfies the equality > -\ Tu(ny7(z) =
Yoaca(@a(na) +¥a(na)) + const|A| for any configuration n on the torus A; actually, we
can take const = 0, since T and Y = T + const are also physically equivalent, and Y’
satisfies the same assumptions as Y.

LEMMA 8.4.
The partition function (8.22) can be rewritten as

ZPer = / ar T e Wa®Ie@ T 2(y) e* 0.
9v" 4D ver

Here the weight z(7y) of a quantum contour v = (B,wpg) with the sequence of transitions
(Ay,..., Ap) at times (T1,...,Tm) 18

z2(y) = 1_[(7’1,;7‘2(7Z —0)| Ta, |n'}h (1: +0)) exp{— /B d(z, T)Tx(nz,,(z) (7'))} (8.40)

The rest R(T') is given by
R(T) = / 437 (C) - / A(4, ) (n(r)) + / dC3T(C;T). (8.41)
CA(F)\ija”(F) Ta Cimall
PROOF. Using the Lemmas 8.1 and 8.3 to substitute in (8.22) the contribution of loops

by the action of the effective potential, we get

m

ZAper:/p dr{TTn%, (7s = 0)| Ta, |nf, (i + 0)) }
gAer

i=1

exp{ - /TA A(4,7)(@a(n}y (1)) + Wa(ny (7)) } X0 (8.42)
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Replacing @ + ¥ by the physically equivalent potential T, we obtain

m
70— /g ar{JTh, (7 = 0)| Ta, Inf, (7 + 0)) }
A

i=1

exp{— / d(az,T)Tz(n?],(x)(T))} [T e c@maml eRE) - (3.43)
Supp I’ deD
We get our lemma by observing that the product over quantum transitions and the first
exponential factorize with respect to the quantum contours, as it was the case for the
loops (for fermions the sign arising because of anticommutation relations also factorize;
we again refer to [DFF 1996] for the proof).
O

Our goal is to obtain a classical lattice system in v + 1 dimensions. Thus we introduce
a discretization of the continuous time direction, by choosing suitable parameters ﬁ >0
and N € N with g = N%.g Setting Ly to be the (v + 1)-dimensional discrete torus
Ly = A x{l,...,N}P" — let us recall that A has periodic boundary conditions in all
spatial directions — and using C(z,t) C Tz» to denote, for any (z,t) € Ly, the segment
2 x (Z(t - 1), 24], we have Ty = U, per, Cla,1).

For any M C Ly, we set C(M) to be the union C(M) = U yemC(z,t) C Ty,
Conversely, if B C Ty, we take M (B) C Ly to be the smallest set such that C(M(B)) D B.
Given a connected!'? set M C Ly and a collection of quantum contours T’ € G /{’er, we define

o(M;T) =/ dC'1 [M(C) = M]®T(C) +
CAMNCEmI()
+ / dC1 [M(C) = M,C ¢ C(SuppT)]8T(C;T) — / (A, ) (nf (7))
C Jmall M(AxT)=M
(8.44)
and
R(T) = / dC'1 [C C C(SuppD)]87(C;T). (8.45)
Cﬁlna.ll

We have separated the contributions of the small clusters inside C'(SuppI') = C(M (SuppT)),
because they are not necessarily a small quantity, and it is impossible to expand them.
On the contrary, ¢(M;T') is small, and hence it is natural to write

R0 = RO ST (ew(M;F) _ 1), (8.46)
M MeM
with the sum running over all collections M of connected subsets of Ly .

Let SuppM = UpemM. Given a set of quantum contours I' € GY*" and a col-
lection M, we introduce contours on Ly by decomposing the set M (SuppT') U Supp M
into connected components [notice that if (z,t) ¢ M (SuppT') U Supp M, then C(z,t) C
UgepWy(T')]. Namely, a contour Y is a pair (Supp Y, ay) where SuppY C L, is a (non-
empty) connected subset of Ly, and ay is a labeling of connected components F of
0C(SuppY), ay(F) = 1,...,r. We write |Y| for the length (area) of the contour Y,

“Remark the difference from Chapter 7; here the vertical length of a segment is 3 /A and it depends
on ||T||, since so does the quantum Peierls constant A.
9Connectedness in Ly is meant in standard way via nearest neighbours.
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i.e. the number of sites in SuppY. A set of contours Y = {Y1,...,Yy} is admissible if
the contours are mutually disjoint and if the labeling is constant on the boundary of each
connected component of Ty \ UyecyC(SuppY). Finally, given an admissible set of contours
Y, we define G4()) to be the union of all connected components M of Ly \ Uycy SuppY
such that C(M) has label d on its boundary.

Consider now any quantum configuration w € WP yielding, together with a collection
M, a fixed set of contours ). Summing over all such configurations w and collections M,
we get the weight to be attributed to the set ). Let I'“ be the collection of quantum
contours corresponding to w, Uycy SuppY = M (Suppl'*) U Supp M. Given that the
configurations w are necessarily constant with no transition on Ty \ C(Uycy SuppY), we
easily see that the weight factor splits into product of weight factors of single contours
Y € Y. Namely, for the weight 3 of a contour Y we get the expression

— d)|Wy(T)NC(Supp Y)| ,R(T)
3(Y) /gAper dr H z(y H e e

verl deD

Y 1 [M(SuppT) USupp M = SuppY] [] <e<ﬂ(M ) _ 1), (8.47)
M MeM

where GP¥(Y) is the set of collections T' of quantum contours compatible with Y, T' €
GY(Y) if SuppT C SuppY and the labels on the boundary of SuppT' match with labels
of Y. Thus, we can finally rewrite the partition function in a form that agrees with the
standard Pirogov-Sinai setting, namely

Z2 =Y "1 e ~RedIga)| 115 (8.48)
Y deD Yey

with the sum being over all admissible sets of contours on L, .
In the next section we will evaluate the decay rate of contours weights in a preparation
to apply the Pirogov-Sinai theory to prove Theorems 3.5, 3.6 and 3.7.

2.2. Exponential decay of the weight of the contours. In this section we show
that the weight 3 has exponential decay with respect to the length of the contours. We
begin by a lemma proving that the contribution of M is small, that we shall use in Lemma
8.6 below for the bound of 3.

LEMMA 8.5.
Under the Assumptions 1-4, for any ¢ < oo there exist constants (3, Bg < 00, and
g0 > 0 such that for any B8 = Bo, Bo < B < 2By, and IT|| < eo, one has

Z ‘etﬂ(M;F) _1‘eC|M\ <1
M>(xz,t)
for any contour Y and any set of quantum contours T € Gy (Y).

Proor. We show that
> e[ eM <1
M>(xz,t)

This implies that |p(M;T')] < 1 and consequently Lemma 8.5 holds — with a slightly
smaller constant c.
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Let us consider separately, in (8.44), the three terms on the right hand side: (a)
the integral over big clusters, (b) the integral over small clusters, and (¢) the expression
involving .

(a) Big clusters. Our aim is to estimate

J= Y el dc1[M(C) = M]|®T(C)|.
M3(e.) ea(m\eg=(r)

Since M(C) = M and M > (z,t), the segment C(z,t) either intersects a quantum
transition of C, or it is contained in a box B belonging to a loop of C (both possibilities
may occur at the same time). In the first case we start the integral over clusters by
choosing the time for the first quantum transition, which yields a factor B/ A. In the
second case we simply integrate over all loops containing the given site. In the same time,

given a cluster C = (&1,...,&,), & = (B, wg),g& ) and B; = A; X [Tl(i), 72(1)], the condition
M(C) = M implies that

Z{|Ai|+%|31|} > |M|. (8.49)

i=1
Using it to bound | M|, we get the estimate

3 a
J < ﬁ/ dc|a”(c)| IT 5"
A C(ma"')\csmall
A A ceC

+/ aC1[C 5 (z,7)][07(C)| [T M5, (8.50)
CA\Csmall fEC

Taking, in Lemma 4.1, the constant ¢ as above as well as a; = %(2R0)_”, g = CA/B,

d = 1, and choosing the corresponding ¢ (¢, a1, g, d), we can bound the second term of

(8.50), for any ||T'|| < eo, with the help of (8.26) once 3 is chosen large enough to satisfy

B € p2
— R, 8.51
N (8.51)

To estimate the first term of (8.50), we first consider the contribution of those clusters

for which
< T ) z@Ro 1Al

e
Applying it together with (8.51) we can directly use the bound (8.27).
Thus it remains to estimate the contribution of those terms for which

10g log(A/B)
Z Al Tog TTT - (8.52)

|Q1

Let us first fix 3 and gy < eole, al,a2,5) with the constants ¢, oy, ag, and § as above,

so that
B C 2v
> Ay —R (8.53)

and, in the same time,

B b2 @R (8.54)
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for a suitable large k' (we also assume that eg < 1). Here k is the constant that appears
in Assumption 2, A(||T|) > |IT||¥. Observing further that A(||T||) can be taken to
increase with ||T|| (one can always consider a weaker lower bound A when taking smaller
IT|), we conclude that (8.51), as well as the condition

log(A/B)
1 2R0 v_mo\— I~/ < k,,
B g
are satisfied for every | T|| < eo. Thus, it suffices to find an upper bound to
B / .
=L /
J - A C(I,T)\Csmall dC|@ (C)| ]I [Z |A| < k] (855)
AT e,

The main problem in estimating this term stems from the factor 1/A that may be large
if ||7"|| is small. Thus, to have a bound valid for all small ||T’||, some terms, coming from
the integral, that would suppress this factor must be displayed.

The condition } ;¢ [A] < &' will be used several times by applying its obvious con-
sequences: (i) the number of loops in C' is smaller than %', (ii) the number of transitions
for each loop is smaller than &', (iii) each transition A is such that |A| < &/, and (iv) the
distance between each transition and z is smaller than &'.

Furthermore, we use Assumption 3 to bound the contribution of the transitions of C;
recalling the definition (8.24) of the weight of &, we have, for any large C,

TT ) < DA [T exo{~ [ dle.ni@atnfi, (7)) = (ol (N1}
¢eC ¢eC B
< bi(ITHA T e olBl, (8.56)
e
In the last inequality we used Assumption 1 in the form of the bound (3.4) as well as the
lower bound | — 71| = % > |R£V| for the support B = A X [y, 72] of the loop &.

For any £ € C = (&,...&y,), let 7 be the time at which the first transition in C' occurs
(we assume that it happens for the “first” loop &) and 7¢ be such that 7 4+ 7¢ is the time
at which the first transition in ¢ occurs (7€' = 0). Referring to the condition (i) on the
number of loops in C, we get the inequality

DI < KDY IB,
¢

§#£&6

A .
< [ L,
4 4

Integrating now over the time of the first transition for each £ € C, ¢ # £, and taking
into account that [T (&1,...,&,)] < n" 2, we get

i Fopn2 o) R\ n— _— n
7<) e ) e

n—=

and thus also

Here the constraint T [¢; : k'] means that the loop &; satisfies the conditions (ii)—(iv) above.
We have then a finite number of finite terms, the contribution of which is bounded by a
fixed number K < oo (depending on g, 3, and &'). Thus J' < 3by(||T||)K which can be
made small by taking ||T'|| sufficiently small.
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(b) Small clusters. Let us first notice that |®T(C;T)| < |®T(C)|, and since M (C) =
M, inequality (8.49) is valid. Moreover C' must contain at least one of the two boundary

points (y,t% + %) of some cell C(y,t) for which dist(z,y) < R. Indeed, given that C

is small and in the same time C' Ncorel’ # @ (c.f. Lemma 8.3), this is the only way to
satisfy also C' ¢ C(Suppl') [c.f. (8.44)]. Thus it suffices to use again (8.26) and (8.51) to

estimate

A
(2R)"/ 4C1[C 3 (z,7)]|8T(C)| T 517
Csma.ll fEC

(¢) Bound for 1°. Finally, we estimate the expression involving ¢®. We first observe
that

AR (8.58)
for any A C Z" and with « = R~ %A, Indeed,

e |9 (ga)] = P |9 (g4) — Wa(ga)| =

2'(C)
= ‘—/ dC'1 [ngA,Ac =A,Ic>0,C CA X0, per |Ic| =ﬁ] 7] +
Csma,ll C
2'(C)
+ dCI[C ~ ga,Ac = A, 16 20,C C A x [—00,00], |Ic| > f] 2 (8.59)
Csmall C

The first integral above corresponds to clusters wrapped around the torus in vertical
direction, while the second one assumes integration over all clusters in A x [—o0, 0o]. For

any C above, |Ic| > [ and thus
eaﬁ < H ea|B| .

Lec

Observing now that every cluster in both integrals necessarily contains in its support at
least one of the points (z,0), x € A, and using the fact that diam A < 2R, we can bound
the first integral by

@/ dC1[C 5 (z,0)]|@T(C)| [T 7',
B CXmall

£eC

which can be directly evaluated by (8.26). The same bound can be actually used also for
the second integral, once we realize that the estimate (8.26) is uniform in £.

Using now the fact that Q/Jﬁ =0 if diam A > 2R, the condition M (A x {7}) =
implies that M has less than (2R)" sites, hence e//M| < e“2R)”  Furthermore, referring
o (8.58), we have

/ (A, ) [P ()T [M(A x {r}) = M] M < %e‘%R’”W“@m”, (8.60)
Ta

which can be made small for 3 sufficiently large and concludes thus the proof of the lemma.
O

Using Lemma 8.5 and introducing ey = mingep e(d), we can estimate the weight 3 of
the contours in the discrete space of cells.
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LEMMA 8.6.
Under the Assumptions 14, for any c < oo, there exist ,Bo,ﬁg < oo and gy > 0 such
that for any B > Bo, Bo < B < 2By, and IT|| < eo, one has

3(V)] < e ReolY] gmelY’
for any contour Y.

PROOF. For a given I' (such that M (SuppI') C SuppY’) with transitions {A4,..., A}
at times {71,...,7,}, we define A(I') = U™, Uzea, [U'(z ) x 7], A = M(A(T')), and
E C SuppY \ .A to be the set of sites (x t) such that nU, ( ) & Dyi(y) for some

(x,7) € C(z,t). The latter can be spht into two disjoint subsets & = Ecore U goft
with (z,t) € £ whenever nl, Gy (z) for some (z,7) € C(z,t). The condition
U' ()

M (SuppT') USupp M = SuppY in (8 47) 1mphes the inequality

eVl < oCCR)”IAM)] oelé] H ecIM
MeM
From definitions (8.47) of 3(Y) and (8.40) of z(7y), and using Assumption 2, we have

eVl5(v)| Yoo 3 eo| Supp Y\ Al S S e ol

ACSuppY ECSupp Y\ AEcore CE

N

o—(3 52 (2R) " —o)leeore| dr' T [M(A(T)) = A, M (coreT) = £7°7¢]
g/}\)er
[Tl(nk, (ri = 0)Ta; [y, (7 + 0)) | R A exp{—/ d(:v,T)Tx(nBI(I)(T))}
i=1 CA)
o R(D)] Y [T 1e#@0 —1]e™l. (8.61)

M, Supp MCSuppY MeM

All elements in M are different, because it is so in the expansion (8.46). Therefore we

have
3 TT |0 —qfecl < 3 %[ S [ertin) _1‘ec\M|}”
M, Supp MCSuppY MeM n>0 MCSuppY
¥ 1 5 e e
n>0 G M>(z,t)
(8.62)

and using Lemma 8.5 this may be bounded by el

In (8.45) clusters are small, and they must contain a space-time site (z,7) such that
there exists ' with (z/,7) € coreI" and dist(z,z') < R. So we have the bound

IR(T)| < (2R)"|coreT| dCc1C > (z,7)]|2T(C)],

small
CA

since |®T(C;T)| < |@T(C)|. Taking now, in Lemma 8.1, the constants ¢ = a; = az = 0

and § = W, and choosing the corresponding £y, we apply (8.26) to get, for any
IT|| < eo, the bound

. A 3 A A

IR(T)| < 40(23) YIcoreT| < gTO(zR)—ﬂgwfﬂ+T°(zR)—”|corerm0(A)|.
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Assuming 3 > ¢ and g% > (2R)"c [c.f. (8.51)], we bound
o—(B=0le\eere| (—~(RELCR) ™ —0le™| 4.

Inserting these estimates into (8.61), we get

V37| < o= ZeolV| oY1 Z 3/ Supp Y\ A| dr'T [M(A(D)) = A]
ACSupp Y gr"
[T1¢nk, (ri = 0) Ta, [0, (7 + 0))] 1A
=1
A
exp{—/ d(x,T)[Tx(’n,E,( )( 7)) — ey — IO(ZR) I [(z,7) € core F]]} (8.63)
C(A)

To estimate the above expression, we will split the “transition part” of the considered
quantum contours into connected components, to be called fragments, and deal with them
separately. Even though the weight of a quantum contour cannot be partitioned into the
corresponding fragments,'! we will get an upper bound combined from fragment bounds.
Consider thus the set

A(T) = coreI' N C(A(T))
and the fragments ¢; = (B;,wp,) on the components B; of A(T"), A(T') = UP_,B;, wp, is
the restriction of w' onto B;.
From Assumption 2, we have

A A

/ A0, ) [Talnf (1) — 0 = S2Q@R) T [(2,7) € coreT]] > 12R) 803 Byl
c(A) i=1

Let us introduce a bound for the contribution of a fragment ¢ with transitions A;,j =

1,...,k,

5(¢) = e~ 1R Al H| (11 = 0)[ Ta, [ (71 + 0))] PR 1411

Then, integrating over the set .7-"0( 4) of all fragments in C'(A), we get

|| —Begly| Y] | Supp Y\ A| i(
eM(Y)| < e aelMleM ST g >

ACSupp Y n>0  JFowm

n
dgz(g)) . (8.64)
Anticipating the bound | Fon d¢z(¢) < |A|, we immediately get the claim,

V3V < e ReolT 3

with a slight change of constant ¢ — ¢ — 3.
A bound on the integral of fragments. Let us first consider short fragments ( = (B,wp)
satisfying the condition

k
Z M (8.65)

log ||

wlv—\

"Tn fact, it partitions in the case of spins or bosons. Only the sign coming with fermions brings
problem.
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The integral over the time of occurrence of the first transition yields the factor B/A
Notice that ¢ is not a loop. This follows from the construction of quantum contours and
the fact that B is a connected component of A(F), where every transition is taken together
with its R-neighbourhood. Thus, either its sequence of transitions does not belong to S,
or the starting configuration does not coincide with the ending configuration. In the first
case we use Assumption 3, in the second case Assumption 4, and since (8.65) means that
the sum over transitions is bounded, we can write

[ 40 < YA (5.66)

cA)

Finally, we estimate the integral over (’s that are not short. We have

/ dc(c / dc(0). (8.67)
fC(A) \}‘short (=,7) }‘short

C(A) ('(.A) C(A)

Here ]—"gﬁ(;; is the set of all fragments ¢ whose first quantum transition (A, ;) is such
that x € Ay and 7 = 71. Whenever ( is not short, we have

k
H 7|24

Qll >

Thus, defining

k ,
#(¢) = e tem st [T [y eccmr 1] ™ (5.65)
j=1

A / acs!
F(z,7)

Here, slightly overestimating, we take for F(z,7) the set of all fragments containing a
quantum transition (A, 7) with z € A.

The support B of a fragment ( = (B,wp) € F(z,7), is a finite union of vertical
segments (i.e. sets of the form {y} x [r, 2] C Tx) and k horizontal quantum transitions
A,y Ay

We finish the proof by showing by induction the bound

/ A0 < 1 (8.69)
F(z,T3k)

with F(z, 7; k) denoting the set of fragments from F(z,7) with at most k£ quantum tran-
sitions.

Consider thus a fragment ( with k£ horizontal quantum transitions connected by ver-
tical segments. Let (A,7) be the transition containing the point (z,7) and let (Ay, 7 +
T1), ..., (Ag, 7+ ) be the transitions that are connected by (one or several) vertical seg-
ments of the respective lengths |71|,...,|7| with the transition (A, 7). If we remove all
those segments, the fragment ¢ will split into the “naked” transition (A,7) and addi-
tional / < ¢ fragments (1,...,(z, such that each fragment Cjy § = 1,...,4, belongs to
F(yj, ™+ 73k — 1) with y; € A. Taking into account that the number of configurations
(determining the possible vertical segments attached to A) above and below A is bounded

we find the bound
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by S241 and that the number of possibilities to choose the points y;j is bounded by |A|Z,
we get

o.¢]
[ aro < X qmpeenisy uyslat [ane [an
F(x,73k) P—1

Adist(A,x)<R

7
—5(2R) ™Y Ao (114417 ”/ d¢z'(¢5)
e 2 z
Flyj,m+T1j3k—1) !

S [||T||%S2 ec(@R) 21141 22R)” /20
A,dist(A,z)<R
- (8.70)
once ||T|| is sufficiently small. )

In the application of Pirogov-Sinai theory we shall also need a bound on derivatives
of the weight of contours.

LEMMA 8.7.
Under the Assumptions 1-5, for any ¢ < oo, there exist constants a, B, By < oo and

g0 > 0 such that if B > o, fo < B <200, and |T|| + i} |I52T| < eo, one has

‘ 0
Op;

Ou;

3| < apfy|e bl eelY

for any contour Y.

PROOF. From the definition (8.47) of 3, one has

0
Bt < B {Z‘auz

o -
Z‘WdﬂC(SuppY H—e“ )‘—F‘%R(F)‘}

ver deD
—e#(d)|WyNC(Supp V)| |R(T)|
+ /pET dF H |Z | H € ¢ e
yel deD
3 1 M(SuppT)USupp M = Supp¥] 3 [0 Loy T e )
M MeM Hi M'eM,M'#M

(8.71)

The bound for |a%iz(f‘)| is standard, see [BKU 1996], and |a%ie”(d)| is assumed to be
bounded in Assumption 5. For the other terms we have to control clusters of loops. Since
we have exponential decay for z(£) with any strength (by taking 8 large and ||T'|| small),
we have the same for 3%1-'2(5 ) (by taking 3 larger and ||T’|| smaller). The integrals over C
can be estimated as before, the only effect of the derivative being an extra factor n (when
the clusters have n loops). O

2.3. Expectation values of local observables and construction of pure states.
So far we have obtained an expression (8.48) for the partition function Z}* of the quantum
model on torus A in terms of that of a classical lattice contour model with the weights of
the contours showing an exponential decay with respect to their length. Using the same
weights 3(Y), we can also introduce the partition functions Zﬁ( L) with the torus A replaced

by a hypercube A(L) and with fixed boundary conditions d. Namely, we take simply the
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sum only over those collections ) of contours whose external contours are labeled by d and
are not close to the boundary.'? Notice, however, that here we are defining Zﬁ( L) directly in
terms of the classical contour model, without ensuring existence of corresponding partition
function directly for the original model. We will use these partition functions only as a
tool for proving our Theorems that are stated directly in terms of quantum models.

To be more precise, we can extend the definition even more and consider, instead of
the torus A, any finite set V. C L. = Z" x {1,..., N} P*". There is a class of contours that
can be viewed as having their support contained in V' C L. For any such contour Y we
introduce its interior Int Y as the union of all finite components of L\ Supp Y and Inty Y
as the union of all components of Int Y whose boundary is labeled by d. Recalling that
we assumed v > 2, we note that the set L\ (Supp Y UIntY") is a connected set, implying
that the label ay (+) is constant on the boundary of the set V(Y) = SuppY UIntY. We
say that Y is a d-contour, if ay = d on this boundary. Two contours Y and Y are called
mutually external if V(Y) NV (Y') = &. Given an admissible set ) of contours, we say
that Y € ) is an external contour in Y, if SuppY NV(Y') =g forall Y e Y, Y #Y.
The sets ) contributing to Z‘d/ are such that all their external contours are d-contours and
dist(Y,0V) > 1 for every Y € Y.

In this way we find ourselves exactly in the setting of standard Pirogov-Sinai theory, see
Chapter 6. Tn particular, for sufficiently large 4 and sufficiently small | 7’| + 37~/ ||8%iT Il,
there exist functions f%#(d), metastable free energies, such that the condition Re f&#(d) =
fo, with fo = fé; " defined by fo = mingcp Re f5#(d'), characterizes the existence of a
pure stable phase d. Namely, as will be shown next, a pure stable phase ()% exists and is
close to the pure ground state |d).

There is one subtlety in the definition of f##(d). Namely, after choosing a suitable
o, given 3, there exist several pairs (3, N) such that 3 € (8y,23) and N3 = 3. To be
specific, we may agree to choose among them that one with maximal N. The function
fP#(d) is then uniquely defined for each 3 > f3y. Notice, however, that while increasing
G, we pass, at the particular value gy = N, BO, from discretization of temporal size N
to N 4+ 1. As a result, the function f%#(d) might be discontinuous at By with 8 = oo
being an accumulation point of such discontinuities. Nevertheless, these discontinuities
are harmless. They can appear only when Re f%#(d) > fy and do not change anything in
the following argument.

Before we come to the construction of pure stable phases, notice that the first claim
of Theorem 3.6 (equality of fo with the limiting free energy) is now a direct consequence
of the bound

Z/{)er _ |Q| e—BfoNL” < e—BfONLU O( e_COHStL) (872)

[c.f. [BKU 1996], (7.14)]. Here Q = {d;Re f3*(d) = fo}.
The expectation value of a local observable K is defined as

Tr K e PHR™
per __
(T)R*" = BT e (8.73)

So far we have obtained a contour expression for Z " = Tr e PHX™ . We retrace here the
same steps for ZP*(K) = TrK e #X" . Duhamel expansion (8.16) for ZP*(K) leads

2Tn the terminology of Pirogov-Sinai theory we rather mean diluted partition functions — see the
more precise definition below.
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to an equation analogous to (8.17),

2P () = 3 Z ) / dri ... A (0| K |}

m>0n ,- Aly ’ <T1< <Tm<,8
A AcA
e V) (0} | T, ) e~ (VTN (0 T, n) e~ BV R - (8.74)

Configurations nQ and n} match on A\ Supp K (Supp K C A is a finite set due to the
locality of K), but may differ on Supp K if K is an operator with non zero off-diagonal
terms. Let WP (K) be the set of quantum configurations with n(7) that is constant
except possibly at U™, (A4; x 7;) U (Supp K x 0). Then

207K = [ dwn 0] K )" (o). (8.75)
WY (K)

We identify loops with the same iteration scheme as before, starting with the set
B (w)U(Supp K x 0) instead of B (w) only. This leads to the set BX (w). Removing
the loops, we define Bf (w), whose connected components form quantum contours. There
is one special quantum contour, namely that which contains Supp K x 0. Let us denote it
by v and define its weight [see (8.40)]

K K " K K
) = (08 k(O K Ind 5 (+0)) [ [ (n; (7i = 0)| T4, I}, (7i + 0))
=1

K

exp{ - /B Al ) Yalmfn, (M)} (8.76)

Let TK = {4K ,’)/1, ..,k } be an admissible set of quantum contours, defining a quantum
configuration W e WP (K). Then we have an expression similar to that of Lemma 8.4,

777 (K) = / dr’ JT e Ma@e@ K65 T 2 e, @)
X dep 7€PK\{75)
with R(T') as in (8.41) with I replaced by ',

Next step is to discretize the lattice, to expand eR(C) , and if Y is the contour that
contains Supp K x 0 C Ly, to define 3% (Y) [see (8.47)]:

RS :/ LR | | DT e &)W (M) (Supp Y )| JR(PK)
GRe (Y ) ,yeFK\{,yK} deD

Z I [M(SuppFKUSuppM = Supp YK] H (e‘P(M;FK) - 1). (8.78)
M MeM

We also need a bound for 35(YX). It is clear that the situation is the same as for

Lemmas 8.5 and 8.6, except for a factor (ngfppK(—Oﬂ K |ngfppK(-l-0)) that is bounded
by ||K||. We can thus summarize:

LEMMA 8.8.



2. GENERAL SYSTEM 121

Under the Assumptions 1-4, for any ¢ < oo, there erist ,Bo,ﬁg < 00, and g9 > 0 such
that if B > Bo, Bo < B < 26y and ||T|| < &9, we have

Zp ()= Y e @eONEy R I ), (879)
VE={VK Y1,..Y},} dED YeyK\{vy X}
for every local observable K, with
K (YE)| < K| St Kl o BeolY K| ey K]
for any contour Y.

In a similar manner as at the beginning of this section, we can introduce Z&(K) for
any V C L by restricting ourselves in the sum (8.79) to the collections VX whose all
external contours are d-contours and dist(Y,0V) > 1 for every Y € YX. Thus we can
define the expectation value

24K
7

(K){ = (8.80)
for any V C L and, in particular, the expectation (K)fl\(L) for a hypercube A(L).

This is exactly the setting discussed in detail in [BKU 1996]. We can use directly the
corresponding results (c.f. [BKU 1996], Lemma 6.1) to prove first that the limiting state
()% exists. Further, retracing the proof of Theorem 2.2 in [BKU 1996] we prove that the
limit

Tr K e PHR"
per _
(K)s = I B 7 (8.81)
exists for every local K (proving thus Theorem 3.5). Moreover,
yPer —
Kls" =% Z ) (8.82)

deQ

where, again, @ denotes the set of stable phases, Q@ = {d;Re f%*(d) = fo}. Thus we
proved the claim d) of Theorem 3.6.

Also the assertion ¢) follows in standard manner from contour representation employing
directly the exponential decay of contour activities and corresponding cluster expansion
[c.f. [BKU 1996], (2.27)].

Before passing to the proof of b), we shall verify that (-)¢ % is actually a pure stable

state according to our definition, i.e. a limit of thermodynamically stable states.'® To this
end, let us first discuss how metastable free energies f%#(d) change with . The standard
construction yields f%#(d) in the form of a sum e#(d) 4+ s%#(d), where s%#(d) is the free
energy of “truncated” contour model K;(Y) [see [BKU 1996], (5.13) and (5.6)] constructed
from labeled contour model (8.48), which is under control by cluster expansions. As a
result, we have bounds of the form O(e ? + ||T||+ I H BT H on |s%#(d)| as well as on
the derivatives with respect to u. Hence, in view of Assumptlon (5), the leading behaviour
is yielded by e#(d).

“Recall that, up to now, the state (-)4 is defined only in terms of the contour representation [see
(8.80), (8.79), and (8.48)], and the only proven connection with a state of original quantum model is the
equality (8.82).
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Starting thus from a given potential ®* with Q* = {d € D;Re f%#(d) = f}}, one can
easily add to ®* a suitable “external field” that favours a chosen d € Q*. For example,
one can take

% (n) = /4 (n) + adf (n)

with 64 defined by taking 0% (n) = 0 for n4 = da and §%(n) = 1 otherwise.!* Now, since

862‘;(@ is bounded from below by a positive constant (while '%#é%;(d’) =0 for d' # d), for

any o > 0 the only stable phase is d, Re f2#%(d) = fé;’”’o‘ = mingcp Re fO#(d'), and, in
the same time, Re f#2(d') > féi’”’a for d' # d. Thus, Q»* = {d} and <'>%,u,a = H/?ifa
This state is thermodynamically stable — when adding any small perturbation, metastable
free energies will change only a little and that one corresponding to the state d will still be
the only one attaining the minimum. The fact that in the limit of vanishing perturbation
We recover <'>%,u,o¢7 as well as the fact that

. \per _ 1 RY:/ — (.\d
all)%l—l—( >ﬁ,u,a = all}})l_i_( >ﬂ,u,a ( >ﬁ,u7
follows by inspecting the contour representations of the corresponding expectations and
observing that it can be expressed in terms of converging cluster expansions whose terms
depend smoothly on « as well as on the additional perturbation.

To prove, finally, the claim b) of Theorem 3.6, it suffices to show that it is valid for
ngra = (-)%’“’a for every a > 0. Abbreviating ()é’jfa = (-)P°" and H\"™P" = HP* we
first notice that the expectation value of the projector onto the configuration d on Supp K,
PéiuppK = |dsupp k) (dsupp K|, 18 close to 1, since its complement ((1 — PguppK))per =
((1— Péiupp )% is related to the presence of a contour intersecting or surrounding Supp K
(loops intersecting Supp K x {0} are considered here as part of quantum contours), whose

weight is small. More precisely, for any é > 0 we have
((]1 - PSduppK))per < 5| SuppK|a

whenever ||T|| is small enough and (3 large enough. Furthermore,
]_ _ per
<K>/I\)er - T [ﬂ(PSdUDpKKPgUDpKe PHA ) +
_ per o per

+ Te((1 = Py ) K Py e 2T ) 4+ T (K (1= P,y ) e P87 )| - (8.83)

and
_ per o per

Tr(PSduppKKPSduppKe PHA ) = (d/\| K |dA> ’I‘r(PSduppKe PHA )

= (da| K [da) [Tr (e 8" ) — Te((1 = P, ) e 757,
(8.84)

so that we have
[(K)R™ — (da| K |da)| <
< ‘(d/\| K |d/\>‘((H_PsduppK»/I\)er—i_‘<(]I_PSduppK)KPSduppK>1I\)er‘+‘<K(]1_PSduppK)>1I\)er"
(8.85)

1 Actually, we can restrict 6% only to a particular type of sets A — for example all hypercubes of side
R.
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The mapping (K, K') — (KTK')X*", with any two local operators K, K, is a scalar prod-
uct; therefore the Schwarz inequality yields

()R —(da| K |da)| < [{dal K |da) (1= PSpp k)X

1 1 i
+ (((]1 - PSduppK))Xer) ’ ([(PsduppKKTKPSduppK>/I\)er] >+ [(KTK>/§)Q ] 2)

< IR = Py s DX+ 2(((0 = Py )R ?] < K| Supp K (6 + 20%).
(8.86)
The proof of the remaining Theorem 3.7 is a standard application of the implicit
function theorem. Thus, for example, the point jiy of maximal coexistence, Re f##0(d) =
Re f3F0(d") for every pair d,d' € D, can be viewed as the solution of the vector equation
F(7i0) = 0, with f(u) = (Re f5(d;) — Re f3(d, )=} Now, f = e +s, e(u) = (e"(d;) -
e (d )iz, s(n) = (Res®#(d;) — ResP#(d,))iZ], with ||s| as well as Hg—;” bounded by

1=1>
a small constant once ||T| + Z::_ll Hg—iH is sufficiently small (3 is sufficiently large. The

existence of a unique solution fig € U then follows once we notice the existence of the
solution py € U of the equation e(ug) = 0 (equivalent with eto(d) = e#°(d'), d,d' € D)
and the fact that the mapping

Oe
) -1
T:ip—A (@‘uzuo(”_m’) — f(w))
with A~! the matrix inverse to (g—z), is a contraction. To this end it is enough just to

recall Assumption 5 and the bounds on s%#(d), d € D, and its derivatives.
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CHAPTER 9

Concluding remarks

At the end of his talk in a conference in Marseille (July 1998), Roman Kotecky de-
scribed the last step of our method that shows the stabilization effect of quantum per-
turbations (the effective interactions, Chapter 8) as to “harvest phase diagrams”. The
expression is pleasant, and I will often refer to it in this conclusion.

To harvest represents quite a lot of work, but a walk along fields of mature cereals
costs little pain, and brings nice illustration of harvesting tools. So let us have a look.

Attractive spin-1 Hubbard model. Here quantum particles are fermions or hard-
core bosons, and can be in three different states. With well chosen chemical potential,
the classical ground states have 0 or 3 particles at each site, and there is a gap for all
excitations.

An effective interaction of strength #2/U should stabilize chessboard phases. There is
no quantum instability, because the passage from a classical ground state to another one
requires the move of 3 particles, hence a factor ¢3/U?.

This could be generalized to attractive spin-S Hubbard models. When S = 2, chess-
board phases (0,5) are expected. Moreover, a phase with one particle on each site of a
sublattice, and four particles on the sites of the other sublattice, should also be stabi-
lized by the effective potential, for suitable chemical potential. For larger S, other similar
phases could also appear.

Incompressibility and zero susceptibility in the asymmetric Hubbard model.
These properties have been conjectured in Chapter 4, see (4.10) and (4.11). Adapting the
ideas of [BKU 1997], the difference between the density in the Gibbs state and that of
the classical ground state, should be related to the presence of a winding contour in
the space-time picture. Since its length is of the order 8, we should find a bound e=#.
Compressibility coefficient and susceptibility should be zero in the ground state of the
(quantum) model. The magnetization as a function of the magnetic field is depicted in
Fig. 9.1 and 9.2; the density with respect to the chemical potential also has a plateau.

m m
1 1
t#0
0 t=0 0 a
2
— T
-1 0 h -1 0 h

FIGURE 9.1. Magnetization as a function of the magnetic field, in the ground state of
the asymmetric Hubbard model. Actually, it is reasonable to expect other plateaus of
width ¢*/U? and smaller, by analogy with the Falicov-Kimball model (see [GM 1996]);
rather than a continuous curve, a devil’s staircase structure could appear.

This should remain true in the standard Hubbard model, for the same reason. However,
the way to prove it remains obscure to me.
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m m

1 1

0 t=0 0 t#0
-1 0 h -1 0 h

FIGURE 9.2. Magnetization as a function of the magnetic field in the asymmetric Hub-
bard model, at low temperature (other quasi-plateaus are also expected when ¢ # 0).

Two-bands electronic system. We are interested in a physical system where the
low temperature physical behaviour is governed by the electrons of two different bands
interacting with Coulomb repulsion. The Hamiltonian is

H=t ) doepott Y dhdye+U CL,TCI,TCL,ﬁI,i

<z, y>,0 <r,y>,0 xT
i !
-V E cl’gcz,gdxya,dx,o_/ — E c};’gcz,g — E dl’gdz,g. (9.1)
z,0,0' x,0 x,0

Operators ci,a,cz,g create, annihilate electrons of spin ¢ at site z, in the most external

band. Similarly dL,g,dx,g create, annihilate holes in the interior band. This model rep-
resents a situation where some electrons of the full first band have been excited to the
second band. U is the repulsive Coulomb energy of electrons of the external band, and V'
is the difference of Coulomb energy that an external electron feels when there is a hole on
the same site.

We assume that only one hole may be present at a given site (i.e. hard-core repulsion
between the holes) and since the distance between two external electrons, at a given site,
is bigger than the distance between these electrons from the inner ones, we have U < V.
We remark that when ¢/ = 0, U = 0, the model reduces to the original Falicov-Kimball
model, where both holes and electrons have spins.

When 2V — U = —2u — !/, —p € (0,V — U) and —p' > 0 (it is possible to choose
p = if 2U < V), the set G of low energy configurations contains all the configurations
where the sites are either empty, or have a hole and two electrons of different spins.

Our results with the effective interaction almost apply and yield a nearest-neighbour
interaction leading to a chessboard phase. Almost, because the set D of dominant states
is infinite (|D| =2 - 23IA1 in a finite volume A); indeed, each hole has indifferently spin 1
or |. Our method should nevertheless adapt to this situation.

Falicov-Kimball model with spin-% electrons. This model was considered in
[MN 1996] and is very similar to the previous one. The single site phase space is 2 =
{0,1,1,4, 11, 11,1}, 3}, where “1” means the presence of an ion. The formal Hamiltonian
is

H=— Z ala, —t Z el yCyo + Uwa(nxT +ng) +V anTnxi
x

<z,u> <z,u> T
oe{td}

with a};, resp. c};g, the creation operator for atoms, resp. electrons. Here w, = aLay and
Npg = cjwcm. The range of parameters would be

<tk UV.
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If the chemical potentials are chosen such that the classical ground states have either
one isolated ion, or two electrons at each site, the harvest should be easy. An effective
interaction selecting the chessboard phases would appear.

More difficult is the situation where the classical ground states have exactly one particle
at each site (the degeneracy is 3|A‘). Suppose U < V. A nearest-neighbour effective
interaction appears, that attributes energy —t2/U to pairs (1,1) and (1,]), —t?/V to
pairs (1,/]), and zero otherwise. It does not remove totally the degeneracy, since the
ground states are now all configurations where the ions occupy a sublattice, while the
sites of the other sublattice have an electron with spin 1 or |. The degeneracy is now
9. 93!l

Fourth order terms in the effective interaction would remove this degeneracy, but there
is “quantum instability”: two electrons at distance 2 can permute at a cost t*/U3. What
we expect however, is that for intermediate temperatures, such that

t2 tt
55 >1 and ﬁm <1,
ions are ordered, while electrons are in a phase that is similar to a high temperature phase
for one sublattice. The corresponding Gibbs state has period 2 (translation invariance is
broken), but is still rotation invariant.

Lattice Helium model. The physical system that we consider here consists in a gas
of Helium atoms in porous media. Helium has two isotopic forms: *He with two protons
and one neutron, and *He with two protons and two neutrons. The first atom behaves
as a fermion, while the second one is a boson. With al; being the creation operator of an
atom *He at site z, and ci« the counterpart for *He, and setting w, = aLaI and n, = cl«cm,
the formal Hamiltonian takes the form

H=—t Z a};ay—t Z cicy-l—UZwInx-l-VZ(wI)Q—p'sz—uan.
<x T x T T

<z,y> SY>

A funny observation is that we obtain known models by taking different limits of the
Helium model.

e If V — oo with y' scaled so that p/'/V is an odd integer, there are ng or ng + 1
bosons at each site (ng depends on p’) and we obtain a model with fermions and
hard-core bosons. If moreover # — 0, the model is the Falicov-Kimball one.

e Still with V' — oo and p'/V an odd integer, but now with ¢ — 0, we obtain a
Falicov-Kimball model where quantum particles are hard-core bosons.

e In the absence of interactions between bosons and fermions, that is, when U — 0,
this is the Bose-Hubbard model.

There is certainly a lot to harvest in this model, and in extensions of this model by
introducing spins, longer-range hoppings or interactions, ...

Quantum Bricmont-Slawny theory. States chosen by thermal fluctuations are
stable with respect to other thermal fluctuations [BS 1989], and they should be also stable
when adding a very small quantum interaction T' (||T|| < e~#). It would be interesting
to prove this, but it looks desperately difficult. If this would be possible, an application
should be the 3D Bose-Hubbard model with nearest-neighbour and next-nearest-neighbour
interactions, at quarter integer filling, where we expect that thermal fluctuations favour
different phases than quantum fluctuations.
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This walk through pleasant models where our theory applies sometimes totally, some-
times only as intuitive guide, should not bring a wrong impression about this work. Our
aim was not to develop tools for getting results on special models, but rather to bring a
modest contribution — indeed extremely modest, but maybe non-zero — to the question
of phase transitions in quantum systems.

We have considered a rather large class of quantum lattice models; this made the
theory technically heavy, but had an important advantage: this allowed to identify the
mechanisms at work in these quantum systems, that are more than mathematical curiosi-
ties valid for peculiar models.

Let us summarize in two sentences the results described in this thesis.

e Small quantum fluctuations do not destroy the stability of phases of “nice” classical
models.

e Quantum fluctuations create an effective interaction; in some cases, other effects
are negligible and the quantum model behaves like a classical one.
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