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Abstract. A self-avoiding walk with small attractive interactions is described here. The
existence of the connective constant is established, and the diffusive behavior is proved
using the method of the lace expansion.

1. Introduction

A powerful tool for the study of self-avoiding walks is the lace expansion of Brydges
and Spencer [BS]. It is applicable above four dimensions and shows the mean-field
behavior of self-avoiding walks, that is, critical exponents are those of the simple
random walk. An extensive survey of random walks can be found in [MS].

The lace expansion was originally introduced for weakly self-avoiding walks,
and extended to the fully self-avoiding case by Slade and Hara [Sla, HS]. Several
improvements, simplifications and alternate approaches have since been proposed,
see [GI, KLMS, vHHS, vHS]. A recent work by Bolthausen and Ritzmann [BR]
uses a fixed point argument and avoids the difficulties that are present when work-
ing in the Fourier space. Its actual range of applicability is limited to the case of
small repulsions, but an extension to the self-avoiding case may be possible.

The purpose of this article is to show that the lace expansion can also be used
when the walk experiences small nearest-neighbor attractions. We consider a model
of random walks w = (w0, . . . , wn) with wt ∈ Z

d , where the connectivity Cn(x)
between 0 and x is defined by

Cn(x) =
∑
w:0→x|w|=n

n∏
t=1

D(wt − wt−1)
∏

0 � s<t � n

(
1 − U(ws − wt)

); (1.1)

the sum is over all n steps random walks w ∈ (Zd)n+1 with w0 = 0 and wn = x.
The jumps of the walk are given a positive weight D, that has the symmetries of
the lattice (precisely: invariance under permutations and inversions of coordinates),
and that satisfies the following assumptions:
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D(0) = 0,
∑
y

D(y) = 1, inf
|x−y|=1,y �=0

D(y)

D(x)
= � > 0. (1.2)

Here and in the sequel |x| denotes the �2 norm of x ∈ Z
d . The last “smoothness”

condition is not very desirable, but it plays an important technical role; notice that
it allows a weight with exponential decay. The potential U is

U(x) =




1 if x = 0

−κ if |x| = 1

0 otherwise.

(1.3)

Here we shall take κ small and positive. Let

cn =
∑
x

Cn(x); (1.4)

one easily gets c1 = 1 + 2dκD(1), where D(1) = D(x) with |x| = 1. We first
establish the existence of the connective constant µ = limn c

1/n
n . Theorem 1 is

valid for all dimensions and small attractions.

Theorem 1. Assume that κ is small enough, so as to satisfy

(1 + κ)2d � 1 + �2

2d (1 + κ)2d−1 .

Then the sequence (c1/n
n ) converges to a number µ with 2−d � µ � c1.

The proof of this theorem is given in Section 2.
Next we state a result that will be proved using the lace expansion method. The

expansion is rather easy to perform; the difficult task is to prove the convergence.
This will be done in two steps. First, we shall obtain bounds on lace expansion terms
involving the supremum norm of Cn(x). Second, we shall check the hypothesis of
van der Hofstad and Slade [vHS]; their results imply Theorem 2 below.

We consider a positive differentiable even function h(ξ) on R, that is decreasing
for ξ > 0, and that satisfies∫

|ξ |d+1+3εh(ξ)dξ <∞ for some ε ∈ (0, 1 ∧ d−4
4 ), (1.5a)

supξ∈R

∣∣∣h′(ξ)
h(ξ)

∣∣∣ <∞. (1.5b)

For x ∈ Z
d \ {0}, we define

D(x) = h(|x|/L)∑
y∈Zd\{0} h(|y|/L)

, (1.6)

andD(0) = 0. The condition (1.5a) is a technical one that appears in [vHS]; (1.5b)
ensures the existence of a non-zero constant �, see (1.2), at least when L is large.
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Theorem 2. Suppose d � 5 and define D by (1.6) with h satisfying (1.5a) and
(1.5b). There exists L0 <∞ such that if L � L0, and if κ is small enough so that
the condition of Theorem 1 holds true, the mean-square displacement satisfies

1

cn

∑
x

|x|2Cn(x) = nδ[1 +O(n−ε)
]
.

The diffusion constant δ can be given an explicit expression, see (4.10).

A self-avoiding random walk with strong attractions (κ large) displays a very
different behavior. A typical walk is expected to maximize nearest-neighbor con-
tacts and to occupy as little a space as possible. We can actually compute a lower
bound for the connective constant by considering only such walks. Let C(n1/d)

denote the cube of size n1/d centered at the origin, and define

γ = lim inf
n→∞

[ ∑
w⊂C(n1/d )

n∏
t=1

D(wt − wt−1)
]1/n
. (1.7)

The sum is over all self-avoiding walks starting at the origin and with support
C(n1/d). Clearly, γ > D(1). We easily obtain a general lower bound for the con-
nective constant, namely

lim inf
n

c
1/n
n � γ (1 + κ)d . (1.8)

It is interesting to note that the bound µ � c1 given in Theorem 1 cannot be true
for κ large. One should also expect that the mean-square displacement has leading
term n2/d , that is, the critical exponent is smaller than in the case of small κ .

A random walk with both on-site repulsion and nearest-neighbor attraction is
studied in [vHK].

The lace expansion is explained in Section 3, and suitable bounds of lace
expansion terms are obtained. The special difficulties associated with attractive
interactions are treated with the help of Section 2. Section 4 contains the proof of
Theorem 2, based on Section 3 and [vHS]. Notice that the assumptions of [vHS] are
less restrictive and the claims are stronger. More general walks can be considered
and a local central limit theorem holds true. See [vHS] for more informations.

2. The connective constant

This section is devoted to the proof of Theorem 1. A lower bound for c1/n
n can be

found by restricting the sum in (1.1) to random walks which jump only in positive
directions, and by neglecting the nearest-neighbor attractions. We get

cn �
( ∑
x:xi � 0

D(x)
)n

� 2−dn; (2.1)

we used the fact that D(x) is normalized, and its sum in the first octant is at least
2−d .
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We prove below that

cm+n � cmcn. (2.2)

Then cn � cn1 , and we obtain the upper bound. From (2.2) and a standard subad-

ditivity argument, we get the convergence of the sequence (c1/n
n ).

The difficulty is to prove (2.2). It clearly holds in the case of repulsive
interactions, and fails when only attractions are present. Here, one has to play the
attractions against the self-avoidance, to see that the effective behavior is indeed
repulsive.

Let us introduce

W(w) =
|w|∏
t=1

D(wt − wt−1)
∏

0 � s<t � |w|

(
1 − U(ws − wt)

); (2.3)

then

cm+n =
∑
x,y

∑
w:0→x|w|=m

W(w)
∑
w′:x→y
|w′|=n

W(w′)
∏

0 � s<m
0<t � n

(
1 − U(ws − w′

t )
)
. (2.4)

Let us fix w; we show that the following holds true for all 0 � j < m:∑
w′:x→y
|w′|=n

W(w′)
∏

j � s<m
0<t � n

(
1 − U(ws − w′

t )
)

�
∑
w′:x→y
|w′|=n

W(w′)
∏

j+1 � s<m
0<t � n

(
1 − U(ws − w′

t )
)
. (2.5)

Notice that (w0, . . . , wj−1) does not play any role in the expression above.
Inequality (2.5) allows to remove the product term in (2.4), and one obtains (2.2).

0

x

y

w
w′wj

w′
u

Fig. 1. The walk w̌ defined in (2.8) is a little deformation of w′.
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Let #nxy be the set of n-steps walks from x to y; furthermore, for given wj we
set

#0 = {w′ ∈ #nxy : dist (w′, wj ) = 0},
#1 = {w′ ∈ #nxy : dist (w′, wj ) = 1},
#2 = {w′ ∈ #nxy : dist (w′, wj ) > 1},

where the distance between a walkw′ and a point z is dist (w′, z) = min1 � t � |w′|
|w′
t − z|. Clearly,∑

w′∈#2

W(w′)
∏

j � s<m
0<t � n

(
1 − U(ws − w′

t )
)

=
∑
w′∈#2

W(w′)
∏

j+1 � s<m
0<t � n

(
1 − U(ws − w′

t )
)
. (2.6)

We turn now to the walks of #0 ∪#1. For w′ ∈ #1, we define

u = min{t � 1 : dist (w′
t , wj ) = 1}. (2.7)

Then we consider a walk w̌ ∈ #0 that is a little deformation of w′, namely

w̌t =
{
w′
t if t �= u,
wj if t = u; (2.8)

this is illustrated in Fig. 1. Notice that

n∏
t=1

D(w̌t − w̌t−1) � �2
n∏
t=1

D(w′
t − w′

t−1). (2.9)

The walk w̌ may involve less nearest neighbor contacts with itself or w, than the
walk w′. The difference is no more than 2d − 1 (a consequence of self-avoidance),
so that∏
0 � s<t � n

(
1 − U(w̌s − w̌t )

) ∏
j+1 � s<m

0<t � n

(
1 − U(ws − w̌t )

)

� (1+κ)−(2d−1)
∏

0 � s<t � n

(
1−U(w′

s−w′
t )

) ∏
j+1 � s<m

0<t � n

(
1−U(ws−w′

t )
)
.

(2.10)

The right side of (2.5) involves walks both of #0 and #1, while the left side
involves only walks of#1. To each walkw′ ∈ #1 corresponds a walk w̌ ∈ #0, and
the weight of w̌ is bounded below by the weight ofw′, up to a factor�2/(1+κ)2d−1.
No more than 2d walks w′ ∈ #1 are mapped on a same w̌. Starting with the right
side of (2.5), we can write
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∑
w′∈#1

W(w′)
∏

j+1 � s<m
0<t � n

(
1 − U(ws − w′

t )
)

+
∑
w̌∈#0

W(w̌)
∏

j+1 � s<m
0<t � n

(
1 − U(ws − w̌t )

)

�
∑
w′∈#1

W(w′)
∏

j+1 � s<m
0<t � n

(
1 − U(ws − w′

t )
)

+ �2

2d (1 + κ)2d−1

∑
w′∈#1

W(w′)
∏

j+1 � s<m
0<t � n

(
1 − U(ws − w′

t )
)

� 1

(1 + κ)2d
[
1 + �2

2d (1 + κ)2d−1

] ∑
w′∈#1

W(w′)
∏

j � s<m
0<t � n

(
1 − U(ws − w′

t )
)
.

The assumption of the theorem implies that the factor in front of the last sum is
larger than 1.

The importance of the “smoothness” condition for D is clear from the occur-
rence of the constant � in the equation above. Self-avoidance allowed to write
the inequality (2.10). In the case of weakly self-avoiding walks some sites receive
many visits, and the method described here does not work — Eq. (2.5) actually
ceases to be true. While weakly self-avoiding walks should also display effective
repulsion, to prove it looks difficult.

3. The lace expansion

The goal now is to write down a lace expansion for our self-avoiding walk with
attractive nearest-neighbor interactions, and then to prove a key estimate; see Prop-
osition 3 below. It will be used in showing the convergence of the lace expansion,
hence in establishing the diffusive behavior of the walk.

The first step consists in obtaining an expansion for the connectivity Cn(x).
A natural idea is to proceed as in a cluster expansion and, in (1.1), to expand the
product over (s, t) so as to get a sum over graphs of n + 1 vertices, and then to
attempt to control the resulting terms. Dealing with these terms is no easy task, but
Brydges and Spencer have shown that suitable bounds can indeed be proven [BS].
The idea is to take advantage of the one-dimensional nature of a walk. We consider
graphs whose sets of vertices are intervals [a, b] in Z; we write G[a, b] for the set
of all graphs on [a, b], and C[a, b] for the set of connected graphs: a graph G is
connected iff

• both a and b are endpoints of edges of G;
• ∀c ∈ (a, b): ∃st ∈ G such that s < c < t .

A lace is a minimally connected graph, i.e. a connected graph such that the
removal of any edge results in a disconnected graph. We denote by L[a, b] the set



A self-avoiding walk with attractive interactions 195

of laces on [a, b]. If G ∈ C[a, b], one can obtain a lace L(G) ⊂ G by keeping
edges s1t1, . . . , smtm of G, according to the following rule:

• s1 = a, t1 = max{t : (a, t) ∈ G}
• t2 = max{t : ∃s < t1 such that st ∈ G}, s2 = min{s : st2 ∈ G}

...

• tm = b, sm = min{s : sb ∈ G}.
Let L be a lace. An edge st /∈ L such that the lace corresponding to L ∪ {st}

is L, is said to be compatible with L, and we write st ∼ L. Any graph G such
that L(G) = L contains all edges of L, and edges that are compatible with L (and
reciprocally).

We are looking for an induction relation for Cn(x). We start by rewriting (1.1)
as

Cn(x) =
∑
w:0→x|w|=n

D(w)
∑

G∈G[0,n]

∏
st∈G

(−U(ws − wt)
)
, (3.1)

with

D(w) =
|w|∏
t=1

D(wt − wt−1). (3.2)

Some graphs have edges attached to 0, and some graphs do not have such edg-
es. Graphs of the former class can be split into a connected graph containing 0,
and another graph whose support consists of the remaining sites. This leads to the
decomposition

∑
G∈G[0,n]

∏
st∈G

(−U(ws − wt)
) =

∑
G∈G[1,n]

∏
st∈G

(−U(ws − wt)
)

+
n∑
m=1

∑
G∈C[0,m]

∏
st∈G

(−U(ws − wt)
) ∑
G′∈G[m+1,n]

∏
st∈G′

(−U(ws − wt)
)
. (3.3)

Fig. 2. Example of a lace. Note that this graph would not be connected without the presence
of s3t3.
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Then

Cn(x) = D ∗ Cn−1(x)+
∑
w:0→x|w|=n

D(w)

n∑
m=1

∑
L∈L[0,m]

∏
st∈L

(−U(ws − wt)
)

∏
st∼L

(
1 − U(ws − wt)

) ∏
m<s<t � n

(
1 − U(ws − wt)

)
. (3.4)

The star symbol denotes the convolution ofD andCn−1, namely
∑
y D(y)Cn−1(x−

y). We define

(m(x) =
∑
w:0→x|w|=m

D(w)
∑

L∈L[0,m]

∏
st∈L

(−U(ws − wt)
) ∏
st∼L

(
1 − U(ws − wt)

)
,

(3.5)

and πm = ∑
x (m(x). Notice that π1 = 2dκD(1). Setting C0(x) = δ0x , we get

the desired formula:

Cn(x) = D ∗ Cn−1(x)+
n∑
m=1

(m ∗ Cn−m(x). (3.6)

Such a relation is true for simple random walks, setting (m(y) ≡ 0. The second
term is therefore the correction due to the self-interactions, and the purpose of the
lace expansion is to show that it is small.

Let L(N)[a, b] denote the set of laces on [a, b] with exactlyN edges. We write

(n(x) =
∑
N � 1

((N)n (x), (3.7)

with

((N)n (x) =
∑
w:0→x|w|=n

D(w)
∑

L∈L(N)[0,n]

∏
st∈L

(−U(ws − wt)
) ∏
st∼L

(
1 − U(ws − wt)

)
.

(3.8)

In order to prove the convergence of the lace expansion, one needs bounds
on (m(x). We propose here estimates that involve norms of Cn, and norms of
moments of Cn. They are both standard and useful. The following proposition
holds true in all dimensions, and with allD satisfying (1.2). It will only be used in
the restricted situation of Theorem 2, however.

Proposition 3. If κ is small enough so as to satisfy the condition in Theorem 1, we
have the following bounds:

(i) For N = 1,
‖((1)n ‖1 � (1 + 2dκ)‖Cn−1‖∞.
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(ii) For N � 2,

‖((N)n ‖1 � (2N − 1)2N−1(1 + 2dκ)N
∑ 2N−1∏

j=1
odd

‖Cmj ‖∞
2N−2∏
j=2
even

‖Cmj ‖1.

(iii) For N = 1 and all γ > 0,

∥∥|x|γ((1)n
∥∥

1 � 2dκ‖Cn−1‖∞.

(iv) For N � 2 and all 1 � γ � 2,

∥∥|x|2γ((N)n
∥∥

1 � (N − 1)2γ−2(2N − 1)22γ−2+N(1 + 2dκ)N

∑ 2N−1∑
i=3
odd

∥∥[|x|γ + 1]Cmi
∥∥∞

2N−1∏
i′=1,i′ �=i

odd

‖Cmi′ ‖∞

2N−2∑
j=2
even

∥∥[|x|γ + 1]Cmj
∥∥

1

2N−2∏
j ′=2,j ′ �=j

even

‖Cmj ′ ‖1.

Unlabeled sums in (ii) and (iv) are over m1, . . . , m2N−1 whose sum is n, and such
that m1 is the larger number, and m2j � m2j+1 for all 1 � j � N − 1.

Proof. The proof is standard, except for the difficulties associated with the attractive
interactions. For part (i),

‖((1)n ‖1 �
∑
x

∑
w:0→x|w|=n

|U(x)|D(w)
∏

0 � s<t � n
(s,t)�=(0,n)

(
1 − U(ws − wt)

)

=
∑
x

|U(x)|
∑
y

D(y)
∑
w:y→x

|w|=n−1

W(w)

n−1∏
t=0

(
1 − U(wt)

)
. (3.9)

This is is a special case of (2.5): in (2.5), take m = 1, j = 0, and wj = 0. As
a result, we get an upper bound by removing the product in (3.9), and we easily
obtain Proposition 3 (i).

Figure 3 depicts a diagram that represents the sum over laces in (3.8). A lace is
completely determined by m = (m1, . . . , m2N−1) such thatm1+· · ·+m2N−1 = n.
These intervals satisfy moreoverm1 � 1,m2N−1 � 1, and for 1 � j � N−1:
m2j � 1, m2j+1 � 0. Then (with x0 = 0)
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Fig. 3. Diagram for ((N)n with N = 5. 0, x1, x
′
0, x2, . . . , x

′
4 are successive positions of the

walks (and are summed upon). The legs 1, . . . ,9 have length m1, . . . , m9 respectively, with
m1 + · · · +m9 = n.

‖((N)n ‖1 �
∑
m

∑
x1,...,xN−1
x′

0,...,x
′
N−1

N−1∏
j=0

|U(xj − x′
j )|

∑
w(1):0→x1
|w(1)|=m1

∑
w(2):x1→x′

0
|w(2)|=m2

. . .

. . .
∑

w(2N−2):xN−1→x′
N−2

|w(2N−2)|=m2N−2

∑
w(2N−1):x′

N−2→x′
N−1

|w(2N−1)|=m2N−1

2N−1∏
j=1

D(w(j))
∏
st∼L

(
1 − U(ws − wt)

)

(3.10)

where the last product is over all edges compatible with the laceL, that is defined by
m. The walkw that appears in the last product is the union (‘concatenation’) of the
walks w(1), . . . , w(2N−1). All edges between vertices of a same leg are compatible
with L, and therefore appear in the product.

We need to get rid of the interactions between different legs. When the random
walk is only repulsive this is easy: neglecting these interactions yields an upper
bound. Here we proceed as in the proof of the existence of the connective constant,
using the fact that the legs are effectively repulsive.

We start with the first leg. It interacts with the legs 2,3,4 only. Notice that
all edges with one endpoint on the leg 1, and the other endpoint on leg 2, 3, or
4, are compatible with L. Let w be a walk on the time interval [m1, n]. Setting
m′ = m1 +m2 +m3 +m4, we have that for all j � 1,∑
w(1):0→x1
|w(1)|=m1

W(w(1))
∏

st∼L:0 � s<m1
m1+j � t<m′

(
1 − U(w(1)s − wt)

)

�
∑

w(1):0→x1
|w(1)|=m1

W(w(1))
∏

st∼L:0 � s<m1
m1+j+1 � t<m′

(
1 − U(w(1)s − wt)

)
. (3.11)

Indeed, the restriction ofw to the time interval [m1,m
′] is a self-avoiding walk,

and we are therefore in the same situation as (2.5).
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Inequality (3.11) implies that we get an upper bound by neglecting the inter-
actions between the first leg and the others in (3.10). The second leg interacts only
with legs 3 and 4, and a similar inequality can be written. We proceed further by
considering the interactions between the third leg and the subsequent ones (pre-
cisely: the legs 4,5,6), and so on. At the end we have an upper bound by removing
all interactions between different legs. Hence,

‖((N)n ‖1 �
∑
m

∑
x1,...,xN−1
x′

0,...,x
′
N−1

N−1∏
j=0

|U(xj − x′
j )|Cm1(x1)Cm2(x1 − x′

0)

(N−1∏
j=2

Cm2j−1(xj − x′
j−2)Cm2j (xj − x′

j−1)
)
Cm2N−1(x

′
N−1 − x′

N−2). (3.12)

The rest of the proof is standard. We first sum over the edge with the larger m. Let
us denote the corresponding index by �. Then we group remaining edges into pairs,
see Figure 4 for examples. We define J = J (m) to be the set of indices such that
� ∈ J , and if (i, j) denotes paired edges, then i ∈ J if mi � mj , and j ∈ J
otherwise. We obtain

‖((N)n ‖1 �
∑
m

∏
j∈J

‖Cmj ‖∞
∑

x1,...,xN−1
x′

0,...,x
′
N−1

N−1∏
j=0

|U(xj − x′
j )|

∏
j∈J c

Cmj (yj − y′
j ).

(3.13)

Here, yj and y′
j are the endpoints of the leg j ; they are determined unambiguously

by m and by x1, . . . , x
′
N−1. The pairing of edges was made in such a way that the

graph with N vertices, and edges given by J c, is always connected (it is actually a
tree). Therefore

∑
x1,...,xN−1
x′

0,...,x
′
N−1

N−1∏
j=0

|U(xj − x′
j )|

∏
j∈J c

Cmj (yj − y′
j ) � (1 + 2dκ)N

∏
j∈J c

‖Cmj ‖1.

(3.14)

Since there are (2N − 1) possibilities for �, and 2N−1 for J \ {�}, we obtain the
bound of Proposition 3 (ii); indeed, the latter corresponds to the case � = 1 and
J = {2j − 1 : 1 � j � N}.

�
�

Fig. 4. Illustration for the pairing of edges.
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The bound (iii) is similar to (i), since ((N)n (x) = 0 if |x| > 1.
The proof of (iv) can be done by first modifying equations (3.10), (3.12), and

(3.13), turning the left side into
∑
x |x|2γ |((N)n (x)|, and inserting an extra factor

|x′
N−1|2γ next to the sum over sites x1, . . . , x

′
N−1. The self-interaction has range

1, so that |xj − x′
j | � 1; introducing appropriate vectors ej with |ej | = 0 or 1,

we have

|x′
N−1|γ =

∣∣∣∑
j∈J c

(yj − y′
j − ej )

∣∣∣γ . (3.15)

By Hölder and since |J c| = N − 1, we get

|x′
N−1|γ � (N − 1)γ−1

∑
j∈J c

|yj − y′
j − ej |γ

� 2γ−1(N − 1)γ−1
∑
j∈J c

[
|yj − y′

j |γ + 1
]
. (3.16)

This inequality also holds when J c is replaced by J \ {�}. It turns out that a suitable
bound for |x′

N−1|2γ is the product of bounds with J c and J \ {�}. We obtain

∑
x

|x|2γ |((N)n (x)| � 22γ−2(N − 1)2γ−2
∑
m

∑
x1,...,xN−1
x′

0,...,x
′
N−1

N−1∏
j=0

|U(xj − x′
j )|

∑
i∈J\{�}

[|yi − y′
i |γ + 1

] ∑
j∈J c

[|yj − y′
j |γ + 1

]
Cm1(x1)Cm2(x1 − x′

0) (3.17)

(N−1∏
j ′=2

Cm2j ′−1
(xj ′ − x′

j ′−2)Cm2j ′ (xj ′ − x′
j ′−1)

)
Cm2N−1(x

′
N−1 − x′

N−2).

The rest of the proof of item (iv) is similar to (ii). ��

4. The diffusive behavior

Convergence of the lace expansion follows from Proposition 3, but it is still a diffi-
cult and intricate task.A rather general context was considered in [vHS] that applies
here. The starting point is the following equation,

fn(k; z) =
n∑
m=1

gm(k; z)fn−m(k; z). (4.1)

Here, f0(k; z) = 1 and k ∈ [−π, π ]d ; z is a positive parameter. An extra term is
allowed in [vHS], but it is not needed here. One comes close to this equation by
taking the Fourier transform of (3.6), namely,

Ĉn(k) = D̂(k)Ĉn−1(k)+
n∑
m=1

(̂m(k)Ĉn−m(k). (4.2)
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Comparing with (4.1), we see that them = 1 term does not perfectly match. Notice
that(1(x) = κD(1)δ|x|,1 and C1(x) = D(x)+(1(x), where D(1) = D(x) with
|x| = 1. One obtains (4.1) with the following definitions:

Ê(k) = D̂(k)+ 2κD(1)
∑d
i=1 cos ki

1 + 2dκD(1)
, (4.3a)

f0(k; z) = 1, f1(k; z) = g1(k; z) = zÊ(k), (4.3b)

fn(k; z) =
( z

1 + 2dκD(1)

)n
Ĉn(k) if n � 2, (4.3c)

gn(k; z) =
( z

1 + 2dκD(1)

)n
(̂n(k) if n � 2. (4.3d)

Assumptions S and D of [vHS] clearly hold, because of our assumptions (1.5a)
and (1.5b), and of the appendix of [vHS]. There remains to check Assumption G
by using Proposition 3. In words, the task is to prove suitable bounds for ‖(n‖1,
assuming bounds for ‖Cn‖∞. Let δ0 = −∇2D̂(0). The constant µ in the following
lemma is any real number, not necessarily the connective constant.

Lemma 4. d � 5, and κ satisfies the condition of Theorem 1.

(i) Assume that ‖Cm‖∞ � Kβµmm−d/2 and ‖Cm‖1 � Kµm for all m < n.
Then if β is small enough, ‖(n‖1 � K ′βµnn−d/2.

(ii) Assume in addition that
∑
x |x|2Cm(x) � Kδ0mµ

m for all m < n. Then if
1 � γ � 2 and β is small enough,

∑
x |x|2γ |(n(x)| � K ′δ0βµnn−d/2+γ .

The constant K ′ depends only on d, κ , and K .

Proof. For item (i) we use Proposition 3 (i) and (ii).

‖(n‖1 � (1 + 2dκ)Kβµn−1(n− 1)−d/2

+
∑
N � 2

(2N − 1)2N−1(1 + 2dκ)N
∑ 2N−1∏

j=1
odd

Kβµmjm
−d/2
j

2N−2∏
j=2
even

Kµmj .

(4.4)

The unlabeled sum is as in Proposition 3. Since m1 is the largest term, we have
m1 � n

2N−1 . The unlabeled sum is bounded by K2N−1(2N − 1)d/2βNµnn−d/2
multiplying

2N−1∏
j=3
odd

{ ∑
mj � 1

m
−d/2
j

mj∑
mj−1=1

1
}

=
( ∑
m � 1

m−d/2+1
)N−1

. (4.5)
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Lemma 4 (i) is then clear, since the sum overN converges for β small enough, and
contributes less than const · βµnn−d/2.

For item (ii) we use Proposition 3 (iii) and (iv). We first observe that under the
assumptions of Lemma 4 we have, for m < n,

∥∥|x|2Cm
∥∥∞ � K ′′δ0βµmm−d/2+1. (4.6)

Indeed, because of (2.2) we can write [vHS2]

|x|2Cm(x) � 2
∑
y

(|y|2 + |x − y|2)Cm/2(y)Cm/2(x − y)

� 4‖Cm/2‖∞
∑
y

|y|2Cm/2(y). (4.7)

(This was assumingm to be even; the casem odd is very similar.) Inserting (4.6) in
Proposition 3 (iv), one gets Lemma 4 (ii) with γ = 2. Then one can use Hölder’s
inequality to get [vHS2]

∑
x

|x|2γ |(n(x)| �
(∑
x

|(n(x)|
)1−γ /2(∑

x

|x|4|(n(x)|
)γ /2

. (4.8)

Item (ii) for general γ follows from (i), and (ii) with γ = 2. ��

Assumption G of [vHS] can be proved with the help of Lemma 4.1 The first two
inequalities are straighforward, as is the third one since ∂zgn(k; z) = 1+2dκD(1)

z
ngn

(k; z). The last inequality is more involved and deals with the error of the Taylor
expansion of gn to second order. First we write

(̂n(k)− (̂n(0)− |k|2
2d

∇2(̂n(0) =
∑
x

[
cos(kx)− 1 + 1

2 (kx)
2](n(x). (4.9)

We used the symmetries of (n(x) to replace a term 1
2d |k|2|x|2 by 1

2 (kx)
2. Now

| cos ξ−1+ 1
2ξ

2| � const ξ2+ε for any 0 � ε � 2. This, and Lemma 4, clearly
implies the validity of Assumption G for |k| small; when |k| is large the situation
is clear.

Theorem 2 is now an immediate consequence of Theorem 1.1 (b) of [vHS].
Finally, the diffusion constant δ can be given an explicit expression, once the

convergence of the lace expansion is established. See Eq. (3.5) of [BR], or Theorem
1.1 (d) of [vHS]. The expression is

δ = µ−1δ0 + τ
1 + σ , (4.10)

1 The assumption of [vHS] involves a bound for ‖D̂2fm‖1 instead of ‖fm‖1. The former
easily implies a suitable bound for ‖fm+2‖1.
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where τ and σ are given by

τ = −
∑
m � 1

∇2 (̂m(0)

µm
,

σ =
∑
m � 2

(m− 1)
πm

µm
.
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