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Abstract We review correlation inequalities of truncated functions for the classical
and quantum XY models. A consequence is that the critical temperature of the XY
model is necessarily smaller than that of the Ising model, in both the classical and
quantum cases. We also discuss an explicit lower bound on the critical temperature
of the quantum XY model.
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1 Setting and Results

The goal of this survey is to recall some results of old that have been rather
neglected in recent years. We restrict ourselves to the cases of classical and quantum
XY models. Correlation inequalities are an invaluable tool that allows to obtain
the monotonicity of spontaneous magnetisation, the existence of infinite volume
limits, and comparisons between the critical temperatures of various models. Many
correlation inequalities have been established for the planar rotor (or classical XY)
model, with interesting applications and consequences in the study of the phase
diagram and the Gibbs states [1–7]. Some of these inequalities can also be proved
for its quantum counterpart [8–11].

Let � be a finite set of sites. The classical XY model (or planar rotor model) is a
model of interacting spins on such a lattice. The configuration space of the system is
defined as ˝� D ff�xgx2� W �x 2 S

1 8x 2 �g: each site hosts a unimodular vector
lying on a unit circle. It is convenient to represent the spins by means of angles,
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namely

�1x D cos�x (1)

�2x D sin �x (2)

with �x 2 Œ0; 2��. The energy of a configuration � 2 ˝� with angles � D f�xgx2�
is

Hcl
�.�/ D �

X

A��
J1A
Y

x2A
�1x C J2A

Y

x2A
�2x ; (3)

with JiA 2 R for all A � �. The expectation value at inverse temperature ˇ of a
functional f on the configuration space is

h f icl
�;ˇ D 1

Zcl
�;ˇ

Z
d�e�ˇHcl

�.�/f .�/; (4)

where Zcl
�;ˇ D R

d�e�ˇHcl
�.�/ is the partition function and

R
d� D R 2�

0 : : :
R 2�
0Q

x2�
d�x
2�

.
We now define the quantum XY model. We restrict ourselves to the spin- 1

2
case.

As before, the model is defined on a finite set of sites�; the Hilbert space is H qu
� D

˝x2�C2. The spin operators acting on C
2 are the three hermitian matrices Si, i D

1; 2; 3, that satisfy
�
S1; S2

� D iS3 and its cyclic permutations, and .S1/2 C .S2/2 C
.S3/2 D 3

4
1. They are explicitly formulated in terms of Pauli matrices:

S1 D 1
2

�
0 1

1 0

�
; S2 D 1

2

�
0 �i
i 0

�
; S3 D 1

2

�
1 0

0 �1
�
: (5)

The hamiltonian describing the interaction is

Hqu
� D �

X

A��
J1A
Y

x2A
S1x C J2A

Y

x2A
S2A; (6)

with Six D Si ˝1�nfxg. The fJiAgA�� are nonnegative coupling constants. The Gibbs
state at inverse temperature ˇ is

hOiqu
�;ˇ D 1

Zqu
�;ˇ

TrO e�ˇHqu
� ; (7)

with Zqu
�;ˇ D Tr e�ˇHqu

� the partition function and O any operator acting on H
qu
� .

The first result holds for both classical and quantum models.
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Theorem 1.1 Assume that J1A; J
2
A � 0 for all A � �. The following inequalities

hold true for all X;Y � �, and for all ˇ > 0.

Classical W
DY

x2X
�1x

Y

x2Y
�1x

Ecl

�;ˇ
�
DY

x2X
�1x

Ecl

�;ˇ

DY

x2Y
�1x

Ecl

�;ˇ
� 0;

DY

x2X
�1x

Y

x2Y
�2x

Ecl

�;ˇ
�
DY

x2X
�1x

Ecl

�;ˇ

DY

x2Y
�2x

Ecl

�;ˇ
� 0:

Quantum W
DY

x2X
S1x
Y

x2Y
S1x
Equ

�;ˇ
�
DY

x2X
S1x
Equ

�;ˇ

DY

x2Y
S1x
Equ

�;ˇ
� 0;

DY

x2X
S1x
Y

x2Y
S2x
Equ

�;ˇ
�
DY

x2X
S1x
Equ

�;ˇ

DY

x2Y
S2x
Equ

�;ˇ
� 0:

In the quantum case, similar inequalities hold for Schwinger functions, see [11]
for details. The proofs are given in Sects. 3 and 4 respectively. These inequalities
are known as Ginibre inequalities—first introduced by Griffiths for the Ising model
[12] and systematised in a seminal work by Ginibre [13], which provides a general
framework for inequalities of this form. Ginibre inequalities for the classical XY
model have then been established with different techniques [1, 3–5, 13]. The
equivalent result for the quantum case has been proved with different approaches
[8–11]. An extension to the ground state of quantum systems with spin 1 was
proposed in [11]. A straightforward corollary of this theorem is monotonicity with
respect to coupling constants, as we see now.

Corollary 1.2 Assume that J1A; J
2
A � 0 for all A � �. Then for all X;Y � �, and

for all ˇ > 0

Classical W @

@J1Y
h
Y

x2X
�1x icl

�;ˇ � 0;

@

@J2Y
h
Y

x2X
�1x icl

�;ˇ � 0:

Quantum W @

@J1Y
h
Y

x2X
S1xiqu

�;ˇ � 0;

@

@J2Y
h
Y

x2X
S1xiqu

�;ˇ � 0:

Interestingly this result appears to be not trivially true for the quantum Heisen-
berg ferromagnet. Indeed a toy version of the fully SU(2) invariant model has
been provided explicitly, for which this result does not hold (nearest neighbours
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interaction on a three-sites chain with open boundary conditions) [14]. The question
whether this result might still be established in a proper setting is still open. On
the other hand, Ginibre inequalities have been proved for the classical Heisenberg
ferromagnet [1, 2, 4].

Monotonicity of correlations with respect to temperature does not follow
straightforwardly from the corollary. This can nonetheless be proved for the classical
XY model.

Theorem 1.3 Classical model: Assume that J1A � jJ2Aj for all A � �, and that
J2A D 0 whenever jAj is odd. Then for all A;B � �, we have

@

@̌

DY

x2B
�1x

Ecl

�;ˇ
� 0:

Let us restrict to the two-body case and assume that Hcl
� is given by

Hcl
� D �

X

x;y2�
Jxy
�
�1x �

1
y C �xy�

2
x �

2
y

�
:

Then if j�xyj � 1 for all x; y,

@

@Jxy
h
Y

z2A
�1z icl

�;ˇ � 0: (8)

Notice that this theorem has a wider range of applicability than Corollary 1.2: in
the theorem above, the coupling constants along one of the directions are allowed
to be negative (though not too negative), while in the corollary the nonnegativity of
all coupling constants a is necessary hypothesis. This result has been proposed and
discussed in various works [4, 6, 13]—see Sect. 3 for the details. Unfortunately we
lack a quantum equivalent of these statements.

We conclude this section by remarking that correlation inequalities in the quan-
tum case can be applied also to other models of interest. For example, we consider a
certain formulation of Kitaev’s model (see [15] for its original formulation and [16]
for a review of the topic). Let� �� Z

2 be a square lattice with edges E�. Each edge
of the lattice hosts a spin, i.e. the Hilbert space of this model is H Kitaev

� D ˝e2E�C2.
The Kitaev hamiltonian is

HKitaev
� D �

X

x2�
Jx
Y

e2E�W
x2e

S1e C
X

F��
JF
Y

e�F

S3e ; (9)

where F denotes the faces of the lattice, i.e. the unit squares which are the building
blocks of Z2, Jx; JF are ferromagnetic coupling constants and Sie D Si ˝ 1E�ne.
HKitaev
� has the same structure as hamiltonian (6) so Ginibre inequalities apply as
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well. It is not clear, though, whether this might lead to useful results for the study of
this specific model.

Another relevant model is the plaquette orbital model that was studied in [17, 18];
interactions between neighbours x; y are of the form �SixS

i
y, with i being equal to 1

or 3 depending on the edge.

2 Comparison Between Ising and XY Models

We now compare the correlations of the Ising and XY models and their respective
critical temperatures. The configuration space of the Ising model is˝ Is

� D f�1; 1g�,
that is, Ising configurations are given by fsxgx2� with sx D ˙1 for each x 2 �. We
consider many-body interactions, so the energy of a configuration s 2 ˝ Is

� is

HIs
�;fJAg.s/ D �

X

A��
JA
Y

x2A
sxI (10)

we assume that the system is “ferromagnetic”, i.e. the coupling constants JA � 0 are
nonnegative. The Gibbs state at inverse temperature ˇ is

h f iIs
�;fJAg;ˇ D 1

ZIs
�;fJAg;ˇ

X

s2˝Is
�

f .s/ e�ˇHIs
�;fJAg ; (11)

with f any functional on ˝ Is
� and ZIs

�;fJAg;ˇ D P
s2˝Is

�
e�ˇHIs

�;fJAg is the partition
function. The following result holds for both the classical [5] and the quantum case
[9, 19].

Theorem 2.1 Assume that J1A; J
2
A � 0 for all A � �. Then for all X � � and all

ˇ > 0,

Classical: h
Y

x2X
�1x icl

�;ˇ � h
Y

x2X
sxiIs

�;fJ1Ag;ˇ:

Quantum: h
Y

x2X
S1xiqu

�;ˇ � 2�jXjh
Y

x2X
sxiIs

�;fJ�
A g;ˇ;

with J�
A D 2�jAjJ1A.

A review of the proof of the classical case is proposed in Sect. 3. In the quantum
case, this statement for spin- 1

2
is a straightforward consequence of Corollary 1.2, but

interestingly this result has been extended to any value of the spin [19]. We review
the proof of this general case in Sect. 4.
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We now consider the case of spin- 1
2

and pair interactions, that is, the hamiltonian
is

Hqu
� D �

X

x;y2�
.S1xS

1
y C S2xS

2
y/: (12)

We define the spontaneous magnetisation m.ˇ/ at inverse temperature ˇ by

m.ˇ/2 D lim inf
�%Zd

1

j�j2
X

x;y2�
hS1xS1yiqu

�;ˇ: (13)

We define the critical temperature for the model Tqu
c D 1=ˇ

qu
c as

ˇqu
c D sup

˚
ˇ > 0 W m.ˇ/ D 0

�
; (14)

where ˇqu
c 2 .0;1�. A consequence of Theorem 2.1 is the following.

Corollary 2.2 The critical temperatures satisfy

Tqu
c � 1

4
T Ising

c :

The critical temperature of the Ising model in the three-dimensional cubic lattice
has been calculated numerically and is T Ising

c D 4:511 ˙ 0:001 [20]. It is Tcl
c D

2:202˙0:001 [21] for the classical model and Tqu
c D 1:008˙0:001 for the quantum

model (S. Wessel, private communication).
A major result of mathematical physics is the rigorous proof of the occurrence

of long-range order in the classical and quantum XY models, in dimensions three
and higher, and if the temperature is low enough [22, 23]. The method can be used
to provide a rigorous lower bound on critical temperatures; the following theorem
concerns the quantum model.

Theorem 2.3 For the three-dimensional cubic lattice, the temperature of the
quantum XY model satisfies

Tqu
c � 0:323:

The best rigorous upper bound on the critical temperature of the three-
dimensional Ising model is T Ising

c � 5:0010 [24]. Together with the above corollary
and theorem, we get

0:323 � Tqu
c � 1

4
T Ising

c � 1:250: (15)

Proof (Theorem 2.3) We consider the XY model with spins in the 1–3 directions for
convenience. We make use of the result [25, Theorem 5.1], that was obtained with
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the method of reflection positivity and infrared bounds [22, 23]. Precisely, we use
Eqs. (5.54), (5.57) and (5.63) of [25].

m.ˇ/2 �
8
<

:

1
4

� J3
2

q
hS10S1e1iqu � K3

ˇ

hS10S1e1iqu
� � I3

2

q
hS10S1e1iqu � K0

3

ˇ

(16)

where e1 is a nearest neighbour of the origin, and J3; I3;K3;K0
3 are real numbers

coming from explicit integrals. Their values are J3 D 1:15672; I3 D 0:349884;
K3 D 0:252731; and K0

3 D 0:105107. Notice that ˇ is rescaled by a factor 2 with
respect to [25], due to a different choice of coupling constants in the hamiltonian.

Let x D
q

hS10S1e1iqu; since we do not have good bounds on x, we treat it as an

unknown. The magnetisation m.ˇ/ is guaranteed to be positive if x � t where t is

the zero of 1
4

� K3
ˇ

� J3
2
x; or x � rC, where rC is the largest zero of x2 � I3

2
x � K0

3

ˇ
.

At least one of these holds true when rC < t, that is, when

1
2

	
I3
2

C
r

I23
4

C 4K0
3

ˇ



< 1

2J3
� 1

ˇ
2K3
J3

(17)

This is the case for 1=ˇ < 0:323 giving the upper bound Tc � 0:323.

3 Proofs for the Classical XY Model

The proofs require several steps and additional lemmas. The following paragraphs
are devoted to a complete study of their proofs. Given local variables f�xgx2�, we
denote � i

A D Q
x2A � i

x for A � �.

3.1 Griffiths and FKG Inequalities, and Proof of Theorem 1.1

We start with Theorem 1.1. We describe the approach proposed in [1, 5], and use a
similar notation. Their framework relies on some well known properties of the Ising
model and on the so called FKG inequality.

Lemma 3.1 (Griffiths Inequalities for the Ising Model) Let f and g be
functionals on ˝ Is

� such that they can be expressed as power series of
Q

x2A sx,
A � � with positive coefficients. Then

h f iIs
�;fJAg;ˇ � 0I

h fgiIs
�;fJAg;ˇ � h f iIs

�;fJAg;ˇhgiIs
�;fJAg;ˇ:
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We do not provide the proof of this result—see [12, 13] for the original
formulation and [26] for a modern description. An immediate consequence is the
following.

Corollary 3.2 Given f with the properties in Lemma 3.1, we have for any A � �

@

@JA
h f iIs

�;fJAg;ˇ � 0:

Another result which is very useful in this framework is the so called FKG
inequality. We formulate it in a specific setting. Let IN D �

0; �
2

�N
for some N 2 N.

Any  2 IN is then a collection of angles  D . 1; : : : ;  N/. It is possible to
introduce a partial ordering relation on IN as follows: for any  ; � 2 IN ,  � � if
and only if  i � �i for all i 2 f1; : : : ;Ng. A function f on IN is said to be increasing
(or decreasing) if  � � implies f . / � f .�/ (or f . / � f .�/) for all  ; � 2 IN .
The following result holds.

Lemma 3.3 (FKG Inequality) Let d	. / D p. /
QN

iD1 d
. i/ be a normalised
measure on IN, with d
. i/ a normalised measure on

�
0; �

2

�
, p. / � 0 for all

 2 IN and

p. _ �/p. ^ �/ � p. /p.�/; (18)

where . _ �/i D max. i; �i/ and . ^ �/i D min. i; �i/. Then for any f and g
increasing (or decreasing) functions on IN

Z
fgd	 �

Z
fd	

Z
gd	:

The inequality changes sign if one of the functions is increasing and the other is
decreasing.

We also skip the proof of this statement. We refer to [27] for the original result,
to [5, 28] for the formulation above, and [26] for its relevance in the study of the
Ising model.

Before turning to the actual proof of the theorem, we introduce another useful
lemma.

Lemma 3.4 Let fqxgx2� be a collection of positive increasing (decreasing) func-
tions on

�
0; �

2

�
. Then for any �;  2 Ij�j and any A � �,

qA.� _  /C qA.� ^  / � qA. /C qA.�/:

We do not provide the proof here, see [5, 28] for more details. We can now discuss
the proof of Theorem 1.1.
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Proof (Theorem 1.1) Since the temperature does not play any rôle in this section,
we set ˇ D 1 in the following and we drop any dependency on it. The main idea of
the proof is to describe a classical XY spin as a pair of Ising spins and an angular
variable. The new notation for �x 2 S

1 is

�1x D cos.�x/Ux; (19)

�2x D sin.�x/Vx; (20)

with Ux;Vx 2 f�1; 1g for all x 2 � and � D .�x1 ; : : : ; �x�/ 2 Ij�j. With this
notation, it is possible to express Hcl

� of Eq. (3) as the sum of two Ising hamiltonians
with spins fUxgx2�, fVxgx2� respectively:

Hcl
� .�;U;V/ D �

X

A��

 
J1A
Y

x2A
cos.�x/UA C J2A

Y

x2A
sin.�x/VA

!
(21)

D HIs
�;fcos.�/AJ1Ag.U/C HIs

�;fsin.�/AJ2Ag.V/: (22)

Let us introduce the notation: J1A
Q

x2A cos.�x/ D JA.�/, J2A
Q

x2A sin.�x/ D K A.�/,R
d� D R �

2

0 : : :
R �

2

0

Q
x2� 2

�
d�x. Then

h�1X�1Y iHcl
�

D
R
d� ZIs

�;fJA.�/gZ
Is
�;fK A.�/g cos.�/X cos.�/YhUXUYiIs

�;fJA.�/gR
d� ZIs

�;fJA.�/gZ
Is
�;fK A.�/g

�
R
d� ZIs

�;fJA.�/gZ
Is
�;fK A.�/g cos.�/XhUXiIs

�;fJA.�/g cos.�/YhUYiIs
�;fJA.�/gR

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g

:

The inequality above follows from Lemma 3.1. Moreover

h�1X�2YiHcl
�

D
R
d�ZIs

�;fJA.�/gZ
Is
�;fK A.�/g cos.�/XhUXiIs

�;fJA.�/g sin.�/YhVYiIs
�;fK A.�/gR

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g

:

cos.�/X and sin.�/X are respectively decreasing and increasing on Ij�j for any
X � �. Let us now consider hUXiIs

�;fJA.�/g. By Corollary 3.2, it is a decreasing

function on Ij�j for any X � �, since the coupling constants of HI
�;fJA.�/g are

decreasing in � . Analogously, hVXiIs
�;fK A.�/g is an increasing function on Ij�j for

any X � �. Theorem 1.1 is then a simple consequence of Lemma 3.3, with
d
.�x/ D 2

�
d�x and

p.�/ D
ZIs
�;fJA.�/gZ

Is
�;fK A.�/gR

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g

: (23)
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The last step missing is to show that p.�/ defined as above fulfills hypothesis (18)
of Lemma 3.3. This amounts to showing

ZIs
�;fK A.�_ /gZ

Is
�;fK A.�^ /g � ZIs

�;fK A.�/gZ
Is
�;fK A. /gI (24)

ZIs
�;fJA.�_ /gZ

I
�;fJA.�^ /g � ZIs

�;fJA.�/gZ
Is
�;fJA. /g: (25)

Since the arguments to prove these inequalities are very similar, we prove explicitly
only the first one. Equation (24) is equivalent to

 
ZIs
�;fK A.�/g

ZIs
�;fK A.�^ /g

!�1  
ZIs
�;fK A.�_ /g
ZIs
�;fK A. /g

!
� 1 (26)

Notice that

 
ZIs
�;fK A.�/g

ZIs
�;fK A.�^ /g

!�1  
ZIs
�;fK A.�_ /g
ZIs
�;fK A. /g

!
D

h e�HIs
�;fK A.�_ /�K A. /g iIs

�;fK A. /g
h e�HIs

�;fK A.�/�K A.�^ /g iIs
�;fK A.�^ /g

:

Thanks to Lemma 3.4, the functions whose expectation value we are computing
above fulfill the hypothesis of Lemma 3.1 and Corollary 3.2. Then, applying
Lemma 3.4 and Corollary 3.2,

h e�HIs
�;fK A.�_ /�K A. /g iIs

�;fK A. /g � h e�HIs
�;fK A.�/�K A.�^ /g iIs

�;fK A. /g

� h e�HIs
�;fK A.�/�K A.�^ /g iIs

�;fK A.�^ /g:
(27)

Hence p.�/ has the required property.

3.2 Proof of Theorem 1.3

Let us now turn to Theorem 1.3. We follow the framework described in [4, 13].

Lemma 3.5 Let Hcl
� be the hamiltonian defined in (3). If J1A � jJ2Aj for all A � �

and J2A D 0 for jAj odd, then there exist non negative coupling constants fKMgM2Z�
such that

Hcl
�.�/ D �

X

M2Z�
KM cos .M � �/ ; (28)

where, given M 2 Z
�, M D .m1;m2; : : : ;m�/, M � � D P

x2� mx�x.
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Proof The statement follows from the two following identities:

cos.�/ cos.�/ D 1

2
.cos.� � �/C cos.� C �//; (29)

sin.�/ sin.�/ D 1

2
.cos.� � �/ � cos.� C �//; (30)

8�; � 2 Œ0; 2��.
A necessary step for this lemma and for Theorem 1.3 is duplication of variables
[13]: we consider two sets of angles (i.e. spins) on the lattice instead of just one, and
denote them by f�xgx2� and f N�xgx2�. The hamiltonian for the f N�xg is

NHcl
�.

N�/ D �
X

A��

�NJ1A N�1A C NJ2A N�2A
�

D �
X

M2Z�
NKM cos.M � N�/: (31)

Here, f N�xg are related to f N�xg as in Eqs. (1) and (2). The NJiA are non negative coupling
constants with NJ1A � jNJ2Aj � 0 and f NKMg are as in Lemma 3.5. A composite
hamiltonian can be defined as

� OH�.�; N�/ D �Hcl
�.�/ � NHcl

�.
N�/

D
X

M2M
KMC NKM

2

�
cos.M � �/C cos.M � N�/�C KM� NKM

2

�
cos.M � �/� cos.M � N�/�

(32)
In the following we always suppose KM � NKM for all M 2 Z

�.The expectation
value of any functional f .�; N�/ can be written as

h f i OH�;ˇ D 1

ZH�;ˇZ NH�;ˇ

Z
d�d N�e�ˇ OH�.�; N�/f .�; N�/: (33)

Lemma 3.6 Suppose f .�; N�/ belongs to the cone generated by cos.M � �/ ˙
cos.M � N�/, M 2 Z

�, i.e. f can be written as product, sum or multiplication by
a positive scalar of objects of that form. Then

h f i OH�;ˇ � 0: (34)

Proof Firstly, notice that

Z
d�d N�

nY

sD1
.cos.Ms � �/˙ cos.Ms � N�/ � 0 (35)
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for any M1; : : : ;Mn 2 Z
� and any sequence of .˙/. This follows from

cos.M � �/C cos.M � N�/ D 2 cos.M � ˚/ cos.M � N̊ /; (36)

cos.M � �/ � cos.M � N�/ D 2 sin.M � ˚/ sin.M � N̊ /; (37)

with ˚i D 1
2
.�i C N�i/ and N̊ i D 1

2
.�i � N�i/. The integral (35) can be formulated as

Z
d˚d N̊F.˚/F. N̊ / D

�Z
d˚F.˚/

�2
� 0; (38)

with F.˚/ an appropriate product of sines, cosines and positive constants.
Let us now turn to hf i OH�;ˇ . Since the partition function is always positive, we can

focus on
Z

d�d N�e�ˇ OH�.�; N�/f .�; N�/: (39)

By a Taylor expansion of e�ˇ OH�.�; N�/ and by the properties of f , this can be
expressed as a sum with positive coefficients of integrals in the form (35). Hence
the nonnegativity of the expectation value.
We have now all we need to prove Theorem 1.3.

Proof (Theorem 1.3) In order to prove the first statement of the theorem we use the
formulation of the hamiltonian described in Lemma 3.5. Moreover, since �1A can
be clearly expressed as the sum (with positive coefficients) of terms of the form
cos.M � �/, M 2 Z

�, it is enough to prove that for any M;N 2 Z
�

@

@KN
hcos.M � �/icl

�;ˇ

D hcos.M � �/ cos.N � �/icl
�;ˇ � hcos.M � �/icl

�;ˇhcos.N � �/icl
�;ˇ � 0:

(40)

Consider now the hamiltonian OH� introduced above and h�i OH�;ˇ the correspond-
ing Gibbs state. From Lemma 3.6 we have

h�cos.M � �/� cos.M � N�/� �cos.N � �/ � cos.N � N�/�i OH�;ˇ � 0: (41)

If we take the limit NKM % KM , we find twice the expression in Eq. (40). Hence the
result.

Let us now turn to the second statement of the theorem. In the case of two-body
interaction Hcl

� assumes the form (8), which, with a notation resembling the one
introduced in Lemma 3.5 can be explicitly formulated as

Hcl
�.�/ D �

X

x;y2�
K�
xy cos.�x � �y/C KC

xy cos.�x C �y/ (42)
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with

Kẋy D Jxy
2

�
1� �xy

�
: (43)

Clearly Kẋy is analogous to the KM introduced in Lemma 3.5 for M 2 Z
� such that

all its elements are zero except mx D 1; my D ˙1. Then we have

@

@Jxy
h�AiHcl

�
D 1C �xy

2

@

@K�
xy

h�AiHcl
�

C 1 � �xy

2

@

@KC
xy

h�AiHcl
�
: (44)

Due to Eq. (40) the expression above is the sum of two positive terms, hence it is
positive.

3.3 Proof of Theorem 2.1

In this section we discuss the proof of Theorem 2.1 for the classical XY model.
We use some of the concepts introduced in Sect. 3.2. The present proof has been
proposed in [1, 5].

Proof (Theorem 2.1) As for the proof of Theorem 1.1, we express the XY spins
by means of two Ising spins and an angle in

�
0; �

2

�
—see Eqs. (19) and (20) for the

explicit expression of the spins and (22) for the new formulation of the hamiltonian
Hcl
�. With the same notation:

h�1XiHcl
�

D
R
d� ZIs

�;fJA.�/gZ
Is
�;fK A.�/g cos.�/XhUXiIs

�;fJA.�/gR
d� ZIs

�;fJA.�/gZ
Is
�;fK A.�/g

�
R
d� ZIs

�;fJA.�/gZ
Is
�;fK A.�/g max�2Ij�j

hUXiIs
�;fJA.�/gR

d� ZIs
�;fJA.�/gZ

Is
�;fK A.�/g

D hUAiIs
�;fJ1Ag:

(45)

4 Proof for the Quantum XY Model

We now discuss the proof of Theorem 1.1 in the quantum case. This theorem has
been proved for pair interaction in [8], and it has been proposed independently in
various works for more generic interactions [9–11]. We describe here the simpler
approach proposed in [11]. Since the temperature does not play any role from now
on, we set ˇ D 1 and omit any dependency on it in the following. As for the classical
case we introduce the notation SiA D Q

x2A Six.
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Proof (Theorem 1.1) For the proof it is convenient to perform a unitary transforma-
tion on the hamiltonian (6) and consider its version with interactions along the first
and third directions of spin, namely

Hqu
� D �

X

A��
J1AS

1
A C J3AS

3
A; (46)

with J3A D J2A for all A � �.
The proof of this theorem uses some techniques similar to the ones introduced

for the classical Theorem 1.3. These were indeed introduced by Ginibre [13] in a
general framework. As for the classical case, it is convenient to duplicate the model.
We introduce a new doubled Hilbert space NH� D H� ˝ H�. Given an operator O
acting on H� we define two operators acting on NH�,

O˙ D O ˝ 1 ˙ 1 ˝ O: (47)

The hamiltonian we consider for the doubled system is Hqu
�;C:

Hqu
�;C D Hqu

� ˝ 1� C 1� ˝ Hqu
� D �

X

A��
J1A.S

1
A/C C J3A.S

3
A/C (48)

The Gibbs state is denoted as

hhOii D 1

.Zqu
� /

2
TrO e�H

qu
�;C ; (49)

for any operator O acting on NH�. It follows from some straightforward algebra that

hOPiqu
� � hOiqu

� hPiqu
� D 1

2
hhO�P�iiI (50)

.OP/˙ D 1

2
.OCP˙ C O�P�/ ; (51)

for any O , P operators on H�.
Just as C

2 constitutes the “building block” for H�, so C
2 ˝ C

2 is to NH�. We
can provide an explicit basis of C2 ˝ C

2 such that S1C, S1�, S3C, �S3� have all non
negative elements:

j
Ci D 1p
2
.j C Ci C j � �i/ ; j
�i D 1p

2
.j C Ci � j � �i/ ; (52)

j	Ci D 1p
2
.j C �i C j � Ci/ ; j	�i D 1p

2
.j C �i � j � Ci/ : (53)
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Above by jCi and j�i we denote the basis of C2 formed by eigenvectors of S3 with
eigenvalues 1

2
and � 1

2
respectively, and ji; ji D jii ˝ j ji. It can be easily checked

that the basis above has the required property. This result implies straightforwardly
that there exists a basis of NH� such that .S1x/C, .S1x/�, .S3x/C and .�S3x/� have non
negative element for all x 2 �. Let us consider the truncated correlation function
we are interested in:

DY

x2X
S1x
Y

x2Y
S1x
Equ

�
�
DY

x2X
S1x
Equ

�

DY

x2Y
S1x
Equ

�
D 1

2
hh�S1X

�
�
�
S1Y
�

�ii: (54)

We can evaluate the right hand side of the equation above by a Taylor expansion:

.Zqu
� /

2hh�S1X
�

�
�
S1Y
�

�ii D
X

n�0

1

nŠ
Tr
�
S1X
�

�
�
S1Y
�

� .�Hqu
�;C/

n (55)

Given the formulation of Hqu
�;C as in Eq. (48) and relation (51), it is clear that

it can be expressed as a polynomial with positive coefficients of operators with
nonnegative elements. The same holds for .S1X/� and.S1Y/�. The trace of operators
with nonnegative elements is non negative, hence the first inequality of the theorem.
The second inequality can be proved precisely in the same way (with S2Y substituted
by S3Y), by noticing that .S3Y/� has necessarily non positive elements.

Let us now turn to Theorem 2.1. While in the classical case it is necessary to
introduce an artificial framework, interestingly the proof for the quantum case does
not require such a construction. For spin- 1

2
the statement can be easily recovered by

recalling that the classical Ising model can be recovered as a particular case of the
quantum XY model (not of the classical one!). We review here a more general proof
valid for any value of spin S [19].

Proof (Theorem 2.1) We reformulate the quantum Hamiltonian in order to have
the interaction along the first and the third axis, as in Eq. (46). We prove here the
following result, which is unitarily equivalent to the statement of the theorem:

˝
S3X
˛qu

�;ˇ
� S jXjhsAiIs

�;fS jAjJ3Ag;ˇ: (56)

From now on we set ˇ D 1 and drop all the dependencies on ˇ since it does not play
any role. Let S i

x D S �1Six be the rescaled spin operators. The models we compare
are the following:

Hqu
�;S D �

X

A��
J1AS

1
A C J3AS

3
A; (57)

HIs
�;fJ3Ag D �

X

A��
J3AsA: (58)
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Clearly, (56) is equivalent to

hS 3Xiqu
�;S � hsXiIs

�;fJ3Ag: (59)

This is what we aim to prove. Let us now build a composite system where each site
of the lattice hosts a quantum degree of freedom and an Ising variable at the same
time. Let H D Hqu

�;S C HIs
�;fJ3Ag, i.e.

H D �
X

A��
J1AS

1
A C J3A.sA C S 3A/: (60)

The Gibbs state is the natural one given the Gibbs states for the two separated
systems. We denote it by h�i�. We are interested in the expectation value hsX � S 3Xi�
for some X � �. Since the trace is invariant under unitary transformations, we can
apply on each site the unitary .S 1x ; S 2x ; S 3x / ! .S 1x ; sxS 2s ; sxS 3x / and find

X

s2˝�
Tr
�
sX � S 3X

�
e�H D

X

s2˝�
Tr sX.1 � S 3X/ e

P
A�� J1AS

1
ACJ3AsA.1CS3A/ (61)

The expression evaluated above is just the expectation value we are interested in
multiplied by the partition function of the system—which is positive and therefore
not useful in the evaluation of the sign of hsX � S 3Xi�. By a Taylor expansion and by
the property

P
s2˝�

Q
x2A snxx � 0 with nx 2 N for all x 2 � and any A � �, it is

clear that the expression above is nonnegative. This implies that

hsXiIs
�;fJ3Ag � hS 3Xiqu

�;S D hsX � S 3Xi� � 0: (62)

This proves Eq. (59).
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